diff --git a/baselines/agents/slam_agents.py b/baselines/agents/slam_agents.py
new file mode 100644
index 0000000000000000000000000000000000000000..741718639ffa7a35db3b8d2da3836996ff081163
--- /dev/null
+++ b/baselines/agents/slam_agents.py
@@ -0,0 +1,623 @@
+import argparse
+import numpy as np
+import torch
+import random
+import time
+import os
+import PIL
+from math import pi
+import torch.nn.functional as F
+import orbslam2
+import habitat
+from baselines.slambased.utils import (
+    generate_2dgrid,
+)
+from baselines.slambased.reprojection import (
+    homogenize_p,
+    get_distance,
+    project_tps_into_worldmap,
+    get_direction,
+    habitat_goalpos_to_mapgoal_pos,
+    planned_path2tps,
+    angle_to_pi_2_minus_pi_2
+)
+from baselines.slambased.reprojection import (
+    angle_to_pi_2_minus_pi_2 as norm_ang
+)
+from habitat.sims.habitat_simulator import (
+    SimulatorActions,
+    SIM_ACTION_TO_NAME,
+    SIM_NAME_TO_ACTION,
+)
+from baselines.slambased.mappers import DirectDepthMapper
+from baselines.slambased.path_planners import DifferentiableStarPlanner
+
+from baselines.config.default import cfg
+from habitat.config.default import get_config
+
+from baselines.slambased.monodepth import MonoDepthEstimator
+
+# https://sumit-ghosh.com/articles/python-download-progress-bar/
+import sys
+import requests
+def download(url, filename):
+    with open(filename, 'wb') as f:
+        response = requests.get(url, stream=True)
+        total = response.headers.get('content-length')
+        if total is None:
+            f.write(response.content)
+        else:
+            downloaded = 0
+            total = int(total)
+            for data in response.iter_content(chunk_size=max(int(total/1000), 1024*1024)):
+                downloaded += len(data)
+                f.write(data)
+                done = int(50*downloaded/total)
+                sys.stdout.write('\r[{}{}]'.format('â–ˆ' * done, '.' * (50-done)))
+                sys.stdout.flush()
+    sys.stdout.write('\n')
+
+
+def ResizePIL2(np_img, size = 256):
+    im1 = PIL.Image.fromarray(np_img)
+    return np.array(im1.resize((size,size)))
+
+def make_good_config_for_orbslam2(config):
+    config.SIMULATOR.AGENT_0.SENSORS = ["RGB_SENSOR", "DEPTH_SENSOR"]
+    config.SIMULATOR.RGB_SENSOR.WIDTH = 256
+    config.SIMULATOR.RGB_SENSOR.HEIGHT = 256
+    config.SIMULATOR.DEPTH_SENSOR.WIDTH = 256
+    config.SIMULATOR.DEPTH_SENSOR.HEIGHT = 256
+    config.BASELINE.ORBSLAM2.CAMERA_HEIGHT = config.SIMULATOR.DEPTH_SENSOR.POSITION[1]
+    config.BASELINE.ORBSLAM2.H_OBSTACLE_MIN = 0.3 * config.BASELINE.ORBSLAM2.CAMERA_HEIGHT
+    config.BASELINE.ORBSLAM2.H_OBSTACLE_MAX = 1.0 * config.BASELINE.ORBSLAM2.CAMERA_HEIGHT
+    config.BASELINE.ORBSLAM2.MIN_PTS_IN_OBSTACLE = config.SIMULATOR.DEPTH_SENSOR.WIDTH/2.0
+    return
+
+class RandomAgent(object):
+    r"""Simplest agent, which returns random actions,
+    until reach the goal
+    """
+
+    def __init__(
+        self,
+        config
+    ):
+        super(RandomAgent, self).__init__()
+        self.num_actions = config.NUM_ACTIONS
+        self.dist_threshold_to_stop = config.DIST_TO_STOP
+        self.reset()
+        return
+
+    def reset(self):
+        self.steps = 0
+        return
+
+    def update_internal_state(self, habitat_observation):
+        self.obs = habitat_observation
+        self.steps += 1
+        return
+
+    def is_goal_reached(self):
+        dist = self.obs["pointgoal"][0]
+        return dist <= self.dist_threshold_to_stop
+
+    def act(self, habitat_observation=None, random_prob=1.0):
+        self.update_internal_state(habitat_observation)
+        # Act
+        # Check if we are done
+        if self.is_goal_reached():
+            action = SIM_NAME_TO_ACTION[SimulatorActions.STOP.value]
+        else:
+            action = random.randint(0, self.num_actions - 1)
+        return action
+
+
+class BlindAgent(RandomAgent):
+    def __init__(
+        self,
+        config
+    ):
+        super(BlindAgent, self).__init__()
+        self.pos_th = config.DIST_TO_STOP
+        self.angle_th = config.ANGLE_TH
+        self.reset()
+        return
+
+    def decide_what_to_do(self):
+        distance_to_goal = self.obs["pointgoal"][0]
+        angle_to_goal = norm_ang(np.array(self.obs["pointgoal"][1]))
+        command = SIM_NAME_TO_ACTION[SimulatorActions.STOP.value]
+        if distance_to_goal <= self.pos_th:
+            return command
+        if abs(angle_to_goal) < self.angle_th:
+            command = "move_forward"
+        else:
+            if (angle_to_goal > 0) and (angle_to_goal < pi):
+                command = "look_left"
+            elif angle_to_goal > pi:
+                command = "look_right"
+            elif (angle_to_goal < 0) and (angle_to_goal > -pi):
+                command = "look_right"
+            else:
+                command = "look_left"
+        return command
+
+    def act(self, habitat_observation=None, random_prob=0.1):
+        self.update_internal_state(habitat_observation)
+        # Act
+        if self.is_goal_reached():
+            return SIM_NAME_TO_ACTION[SimulatorActions.STOP.value]
+        command = self.decide_what_to_do()
+        random_action = random.randint(0, self.num_actions - 1)
+        act_randomly = np.random.uniform(0, 1, 1) < random_prob
+        if act_randomly:
+            action = random_action
+        else:
+            action = SIM_NAME_TO_ACTION[command]
+        return action
+
+
+class ORBSLAM2Agent(RandomAgent):
+    def __init__(
+        self,
+        config,
+        device=torch.device("cuda:0"),
+    ):
+        self.num_actions = config.NUM_ACTIONS
+        self.dist_threshold_to_stop = config.DIST_TO_STOP
+        self.slam_vocab_path = config.SLAM_VOCAB_PATH
+        assert os.path.isfile(self.slam_vocab_path)
+        self.slam_settings_path = config.SLAM_SETTINGS_PATH
+        assert os.path.isfile(self.slam_settings_path)
+        self.slam = orbslam2.System(
+            self.slam_vocab_path, self.slam_settings_path, orbslam2.Sensor.RGBD
+        )
+        self.slam.set_use_viewer(False)
+        self.slam.initialize()
+        self.device = device
+        self.map_size_meters = config.MAP_SIZE
+        self.map_cell_size = config.MAP_CELL_SIZE
+        self.pos_th = config.DIST_REACHED_TH
+        self.next_wp_th = config.NEXT_WAYPOINT_TH
+        self.angle_th = config.ANGLE_TH
+        self.obstacle_th = config.MIN_PTS_IN_OBSTACLE
+        self.depth_denorm = config.DEPTH_DENORM
+        self.planned_waypoints = []
+        self.mapper = DirectDepthMapper(
+                      camera_height = config.CAMERA_HEIGHT,
+                      near_th = config.D_OBSTACLE_MIN,
+                      far_th = config.D_OBSTACLE_MAX,
+                      h_min = config.H_OBSTACLE_MIN,
+                      h_max = config.H_OBSTACLE_MAX,
+                      map_size = config.MAP_SIZE,
+                      map_cell_size = config.MAP_CELL_SIZE,
+                      device = device)
+        self.planner = DifferentiableStarPlanner(
+                      max_steps = config.PLANNER_MAX_STEPS,
+                      preprocess = config.PREPROCESS_MAP,
+                      beta = config.BETA,
+                      device = device)
+        self.slam_to_world = 1.0
+        self.timestep = 0.1
+        self.timing = False
+        self.reset()
+        return
+
+    def reset(self):
+        super(ORBSLAM2Agent, self).reset()
+        self.offset_to_goal = None
+        self.tracking_is_OK = False
+        self.waypointPose6D = None
+        self.unseen_obstacle = False
+        self.action_history = []
+        self.planned_waypoints = []
+        self.map2DObstacles = self.init_map2d()
+        n, ch, height, width = self.map2DObstacles.size()
+        self.coordinatesGrid = generate_2dgrid(height, width, False).to(
+            self.device
+        )
+        self.pose6D = self.init_pose6d()
+        self.action_history = []
+        self.pose6D_history = []
+        self.position_history = []
+        self.planned2Dpath = torch.zeros((0))
+        self.slam.reset()
+        self.cur_time = 0
+        self.toDoList = []
+        self.waypoint_id = 0
+        if self.device != torch.device("cpu"):
+            torch.cuda.empty_cache()
+        return
+
+    def update_internal_state(self, habitat_observation):
+        super(ORBSLAM2Agent, self).update_internal_state(
+            habitat_observation
+        )
+        self.cur_time += self.timestep
+        rgb, depth = self.rgb_d_from_observation(habitat_observation)
+        t = time.time()
+        try:
+            self.slam.process_image_rgbd(rgb, depth, self.cur_time)
+            if self.timing:
+                print(time.time() - t, "ORB_SLAM2")
+            self.tracking_is_OK = str(self.slam.get_tracking_state()) == "OK"
+        except BaseException:
+            print("Warning!!!! ORBSLAM processing frame error")
+            self.tracking_is_OK = False
+        if not self.tracking_is_OK:
+            self.reset()
+        t = time.time()
+        self.set_offset_to_goal(habitat_observation)
+        if self.tracking_is_OK:
+            trajectory_history = np.array(self.slam.get_trajectory_points())
+            self.pose6D = homogenize_p(
+                torch.from_numpy(trajectory_history[-1])[1:]
+                .view(3, 4)
+                .to(self.device)
+            ).view(1, 4, 4)
+            self.trajectory_history = trajectory_history
+            if len(self.position_history) > 1:
+                previous_step = get_distance(
+                    self.pose6D.view(4, 4),
+                    torch.from_numpy(self.position_history[-1])
+                    .view(4, 4)
+                    .to(self.device),
+                )
+                if (
+                    SIM_ACTION_TO_NAME[self.action_history[-1]]
+                    == "move_forward"
+                ):
+                    self.unseen_obstacle = (
+                        previous_step.item() <= 0.001
+                    )  # hardcoded threshold for not moving
+        current_obstacles = self.mapper(
+            torch.from_numpy(depth).to(self.device).squeeze(), self.pose6D
+        ).to(self.device)
+        self.current_obstacles = current_obstacles
+        self.map2DObstacles = torch.max(
+            self.map2DObstacles, current_obstacles.unsqueeze(0).unsqueeze(0)
+        )
+        if self.timing:
+            print(time.time() - t, "Mapping")
+        return True
+
+    def init_pose6d(self):
+        return torch.eye(4).float().to(self.device)
+
+    def map_size_in_cells(self):
+        return int(self.map_size_meters / self.map_cell_size)
+
+    def init_map2d(self):
+        return (
+            torch.zeros(1,
+                        1,
+                        self.map_size_in_cells(),
+                        self.map_size_in_cells())
+            .float()
+            .to(self.device)
+        )
+
+    def get_orientation_on_map(self):
+        self.pose6D = self.pose6D.view(1, 4, 4)
+        return torch.tensor(
+            [
+                [self.pose6D[0, 0, 0], self.pose6D[0, 0, 2]],
+                [self.pose6D[0, 2, 0], self.pose6D[0, 2, 2]],
+            ]
+        )
+
+    def get_position_on_map(self, do_floor=True):
+        return project_tps_into_worldmap(
+            self.pose6D.view(1, 4, 4),
+            self.map_cell_size,
+            self.map_size_meters,
+            do_floor,
+        )
+
+    def act(self, habitat_observation, random_prob=0.1):
+        # Update internal state
+        t = time.time()
+        cc = 0
+        update_is_ok = self.update_internal_state(habitat_observation)
+        while not update_is_ok:
+            update_is_ok = self.update_internal_state(habitat_observation)
+            cc += 1
+            if cc > 2:
+                break
+        if self.timing:
+            print(time.time() - t, " s, update internal state")
+        self.position_history.append(
+            self.pose6D.detach().cpu().numpy().reshape(1, 4, 4)
+        )
+        success = self.is_goal_reached()
+        if success:
+            action = SIM_NAME_TO_ACTION[SimulatorActions.STOP.value]
+            self.action_history.append(action)
+            return action
+        # Plan action
+        t = time.time()
+        self.planned2Dpath, self.planned_waypoints = self.plan_path()
+        if self.timing:
+            print(time.time() - t, " s, Planning")
+        t = time.time()
+        # Act
+        if self.waypointPose6D is None:
+            self.waypointPose6D = self.get_valid_waypoint_pose6d()
+        if (
+            self.is_waypoint_reached(self.waypointPose6D)
+            or not self.tracking_is_OK
+        ):
+            self.waypointPose6D = self.get_valid_waypoint_pose6d()
+            self.waypoint_id += 1
+        action = self.decide_what_to_do()
+        # May be random?
+        random_action = random.randint(0, self.num_actions - 1)
+        what_to_do = np.random.uniform(0, 1, 1)
+        if what_to_do < random_prob:
+            action = random_action
+        if self.timing:
+            print(time.time() - t, " s, get action")
+        self.action_history.append(action)
+        return action
+
+    def is_waypoint_good(self, pose6d):
+        p_init = self.pose6D.squeeze()
+        dist_diff = get_distance(p_init, pose6d)
+        valid = dist_diff > self.next_wp_th
+        return valid.item()
+
+    def is_waypoint_reached(self, pose6d):
+        p_init = self.pose6D.squeeze()
+        dist_diff = get_distance(p_init, pose6d)
+        reached = dist_diff <= self.pos_th
+        return reached.item()
+
+    def get_waypoint_dist_dir(self):
+        angle = get_direction(
+            self.pose6D.squeeze(), self.waypointPose6D.squeeze(), 0, 0
+        )
+        dist = get_distance(
+            self.pose6D.squeeze(), self.waypointPose6D.squeeze()
+        )
+        return torch.cat(
+            [
+                dist.view(1, 1),
+                torch.sin(angle).view(1, 1),
+                torch.cos(angle).view(1, 1),
+            ],
+            dim=1,
+        )
+
+    def get_valid_waypoint_pose6d(self):
+        p_next = self.planned_waypoints[0]
+        while not self.is_waypoint_good(p_next):
+            if len(self.planned_waypoints) > 1:
+                self.planned_waypoints = self.planned_waypoints[1:]
+                p_next = self.planned_waypoints[0]
+            else:
+                p_next = self.estimatedGoalPos6D.squeeze()
+                break
+        return p_next
+
+    def set_offset_to_goal(self, observation):
+        self.offset_to_goal = (
+            torch.from_numpy(observation["pointgoal"]).float().to(self.device)
+        )
+        self.estimatedGoalPos2D = habitat_goalpos_to_mapgoal_pos(
+            self.offset_to_goal,
+            self.pose6D.squeeze(),
+            self.map_cell_size,
+            self.map_size_meters,
+        )
+        self.estimatedGoalPos6D = planned_path2tps(
+            [self.estimatedGoalPos2D],
+            self.map_cell_size,
+            self.map_size_meters,
+            1.0,
+        ).to(self.device)[0]
+        return
+
+    def rgb_d_from_observation(self, habitat_observation):
+        rgb = habitat_observation["rgb"]
+        depth = None
+        if "depth" in habitat_observation:
+            depth = (
+                self.depth_denorm * habitat_observation["depth"]
+            )  
+        return rgb, depth
+
+    def prev_plan_is_not_valid(self):
+        if len(self.planned2Dpath) == 0:
+            return True
+        pp = torch.cat(self.planned2Dpath).detach().cpu().view(-1, 2)
+        binary_map = self.map2DObstacles.squeeze().detach() >= self.obstacle_th
+        obstacles_on_path = (
+            binary_map[pp[:, 0].long(), pp[:, 1].long()]
+        ).long().sum().item() > 0
+        return obstacles_on_path  # obstacles_nearby or  obstacles_on_path
+
+    def rawmap2_planner_ready(self, rawmap, start_map, goal_map):
+        map1 = (rawmap / float(self.obstacle_th)) ** 2
+        map1 = (
+            torch.clamp(map1, min=0, max=1.0)
+            - start_map
+            - F.max_pool2d(goal_map, 3, stride=1, padding=1)
+        )
+        return torch.relu(map1)
+
+    def plan_path(self, overwrite=False):
+        t = time.time()
+        if (
+            (not self.prev_plan_is_not_valid())
+            and (not overwrite)
+            and (len(self.planned_waypoints) > 0)
+        ):
+            return self.planned2Dpath, self.planned_waypoints
+        self.waypointPose6D = None
+        current_pos = self.get_position_on_map()
+        start_map = torch.zeros_like(self.map2DObstacles).to(self.device)
+        start_map[
+            0, 0, current_pos[0, 0].long(), current_pos[0, 1].long()
+        ] = 1.0
+        goal_map = torch.zeros_like(self.map2DObstacles).to(self.device)
+        goal_map[
+            0,
+            0,
+            self.estimatedGoalPos2D[0, 0].long(),
+            self.estimatedGoalPos2D[0, 1].long(),
+        ] = 1.0
+        path, cost = self.planner(
+            self.rawmap2_planner_ready(
+                self.map2DObstacles, start_map, goal_map
+            ).to(self.device),
+            self.coordinatesGrid.to(self.device),
+            goal_map.to(self.device),
+            start_map.to(self.device),
+        )
+        if len(path) == 0:
+            return path, []
+        if self.timing:
+            print(time.time() - t, " s, Planning")
+        t = time.time()
+        planned_waypoints = planned_path2tps(
+            path, self.map_cell_size, self.map_size_meters, 1.0, False
+        ).to(self.device)
+        return path, planned_waypoints
+
+    def planner_prediction_to_command(self, p_next):
+        command = "stop"
+        p_init = self.pose6D.squeeze()
+        d_angle_rot_th = self.angle_th
+        pos_th = self.pos_th
+        if get_distance(p_init, p_next) <= pos_th:
+            return command
+        d_angle = angle_to_pi_2_minus_pi_2(
+            get_direction(p_init, p_next, ang_th=d_angle_rot_th, pos_th=pos_th)
+        )
+        if abs(d_angle) < d_angle_rot_th:
+            command = "move_forward"
+        else:
+            if (d_angle > 0) and (d_angle < pi):
+                command = "look_left"
+            elif d_angle > pi:
+                command = "look_right"
+            elif (d_angle < 0) and (d_angle > -pi):
+                command = "look_right"
+            else:
+                command = "look_left"
+        return command
+
+    def decide_what_to_do(self):
+        action = None
+        if self.is_goal_reached():
+            action = SIM_NAME_TO_ACTION[SimulatorActions.STOP.value]
+            return action
+        if self.unseen_obstacle:
+            command = "look_right"
+            return SIM_NAME_TO_ACTION[command]
+        command = "stop"
+        command = self.planner_prediction_to_command(self.waypointPose6D)
+        return SIM_NAME_TO_ACTION[command]
+
+class ORBSLAM2MonodepthAgent(ORBSLAM2Agent):
+    def __init__(
+        self,
+        config,
+        device=torch.device("cuda:0"),
+        monocheckpoint = 'baselines/slambased/data/mp3d_resnet50.pth',
+    ):
+        self.num_actions = config.NUM_ACTIONS
+        self.dist_threshold_to_stop = config.DIST_TO_STOP
+        self.slam_vocab_path = config.SLAM_VOCAB_PATH
+        assert os.path.isfile(self.slam_vocab_path)
+        self.slam_settings_path = config.SLAM_SETTINGS_PATH
+        assert os.path.isfile(self.slam_settings_path)
+        self.slam = orbslam2.System(
+            self.slam_vocab_path, self.slam_settings_path, orbslam2.Sensor.RGBD
+        )
+        self.slam.set_use_viewer(False)
+        self.slam.initialize()
+        self.device = device
+        self.map_size_meters = config.MAP_SIZE
+        self.map_cell_size = config.MAP_CELL_SIZE
+        self.pos_th = config.DIST_REACHED_TH
+        self.next_wp_th = config.NEXT_WAYPOINT_TH
+        self.angle_th = config.ANGLE_TH
+        self.obstacle_th = config.MIN_PTS_IN_OBSTACLE
+        self.depth_denorm = config.DEPTH_DENORM
+        self.planned_waypoints = []
+        self.mapper = DirectDepthMapper(
+                      camera_height = config.CAMERA_HEIGHT,
+                      near_th = config.D_OBSTACLE_MIN,
+                      far_th = config.D_OBSTACLE_MAX,
+                      h_min = config.H_OBSTACLE_MIN,
+                      h_max = config.H_OBSTACLE_MAX,
+                      map_size = config.MAP_SIZE,
+                      map_cell_size = config.MAP_CELL_SIZE,
+                      device = device)
+        self.planner = DifferentiableStarPlanner(
+                      max_steps = config.PLANNER_MAX_STEPS,
+                      preprocess = config.PREPROCESS_MAP,
+                      beta = config.BETA,
+                      device = device)
+        self.slam_to_world = 1.0
+        self.timestep = 0.1
+        self.timing = False
+        self.checkpoint = monocheckpoint
+        if not os.path.isfile(self.checkpoint):
+            mp3d_url = 'http://cmp.felk.cvut.cz/~mishkdmy/navigation/mp3d_ft_monodepth_resnet50.pth'
+            suncg_me_url = 'http://cmp.felk.cvut.cz/~mishkdmy/navigation/suncg_me_resnet.pth'
+            suncg_mf_url = 'http://cmp.felk.cvut.cz/~mishkdmy/navigation/suncg_mf_resnet.pth'
+            url = mp3d_url
+            print ("No monodepth checkpoint found. Downloading...", url)
+            download(url, self.checkpoint)
+        self.monodepth = MonoDepthEstimator(self.checkpoint)
+        self.reset()
+        return
+
+    def rgb_d_from_observation(self, habitat_observation):
+        rgb = habitat_observation["rgb"]
+        depth = ResizePIL2(self.monodepth.compute_depth(PIL.Image.fromarray(rgb).resize((320,320))), 256)#/1.75
+        depth[depth > 3.0] = 0
+        depth[depth < 0.1] = 0
+        return rgb, np.array(depth).astype(np.float32)
+
+
+def main():
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "--agent-type",
+        default="orbslam2-rgbd",
+        choices=["blind",
+                 "orbslam2-rgbd",
+                 "orbslam2-rgb-monod"],
+    )
+    parser.add_argument(
+        "--task-config", type=str, default="tasks/pointnav_rgbd.yaml"
+    )
+    args = parser.parse_args()
+
+    config = get_config()
+    agent_config = cfg()
+    config.defrost()
+    config.BASELINE = agent_config.BASELINE
+    make_good_config_for_orbslam2(config)
+
+    if args.agent_type == 'blind':
+        agent = BlindAgent(config.BASELINE.ORBSLAM2)
+    elif args.agent_type == 'orbslam2-rgbd':
+        agent = ORBSLAM2Agent(config.BASELINE.ORBSLAM2)
+    elif args.agent_type == 'orbslam2-rgb-monod':
+        agent = ORBSLAM2MonodepthAgent(config.BASELINE.ORBSLAM2)
+    else:
+        raise ValueError(args.agent_type, 'is unknown type of agent')
+    benchmark = habitat.Benchmark(args.task_config)
+    metrics = benchmark.evaluate(agent)
+    for k, v in metrics.items():
+        habitat.logger.info("{}: {:.3f}".format(k, v))
+
+
+if __name__ == "__main__":
+    main()
+
diff --git a/baselines/config/default.py b/baselines/config/default.py
index fe44c93965f4a3f4f59a65b07f0e16f807348312..d100fd79bdaff663c265dc8af1bf09464351233e 100644
--- a/baselines/config/default.py
+++ b/baselines/config/default.py
@@ -5,8 +5,9 @@
 # LICENSE file in the root directory of this source tree.
 
 import os
+import numpy as np
 from typing import Optional
-
+from habitat import get_config
 from habitat.config import Config as CN
 
 DEFAULT_CONFIG_DIR = "configs/"
@@ -17,7 +18,7 @@ DEFAULT_CONFIG_DIR = "configs/"
 _C = CN()
 _C.SEED = 100
 # -----------------------------------------------------------------------------
-# BASELINES
+# BASELINE
 # -----------------------------------------------------------------------------
 _C.BASELINE = CN()
 # -----------------------------------------------------------------------------
@@ -27,6 +28,28 @@ _C.BASELINE.RL = CN()
 _C.BASELINE.RL.SUCCESS_REWARD = 10.0
 _C.BASELINE.RL.SLACK_REWARD = -0.01
 # -----------------------------------------------------------------------------
+# ORBSLAM2 BASELINE
+# -----------------------------------------------------------------------------
+_C.BASELINE.ORBSLAM2 = CN()
+_C.BASELINE.ORBSLAM2.SLAM_VOCAB_PATH = "baselines/slambased/data/ORBvoc.txt"
+_C.BASELINE.ORBSLAM2.SLAM_SETTINGS_PATH = "baselines/slambased/data/mp3d3_small1k.yaml"
+_C.BASELINE.ORBSLAM2.MAP_CELL_SIZE = 0.1
+_C.BASELINE.ORBSLAM2.MAP_SIZE = 40
+_C.BASELINE.ORBSLAM2.CAMERA_HEIGHT = get_config().SIMULATOR.DEPTH_SENSOR.POSITION[1]
+_C.BASELINE.ORBSLAM2.BETA = 100
+_C.BASELINE.ORBSLAM2.H_OBSTACLE_MIN = 0.3 * _C.BASELINE.ORBSLAM2.CAMERA_HEIGHT
+_C.BASELINE.ORBSLAM2.H_OBSTACLE_MAX = 1.0 * _C.BASELINE.ORBSLAM2.CAMERA_HEIGHT
+_C.BASELINE.ORBSLAM2.D_OBSTACLE_MIN = 0.1
+_C.BASELINE.ORBSLAM2.D_OBSTACLE_MAX = 4.0
+_C.BASELINE.ORBSLAM2.PREPROCESS_MAP = True
+_C.BASELINE.ORBSLAM2.MIN_PTS_IN_OBSTACLE = get_config().SIMULATOR.DEPTH_SENSOR.WIDTH/2.0
+_C.BASELINE.ORBSLAM2.ANGLE_TH = float(np.deg2rad(15))
+_C.BASELINE.ORBSLAM2.DIST_REACHED_TH = 0.15
+_C.BASELINE.ORBSLAM2.NEXT_WAYPOINT_TH = 0.5
+_C.BASELINE.ORBSLAM2.NUM_ACTIONS = 3
+_C.BASELINE.ORBSLAM2.DIST_TO_STOP = 0.05
+_C.BASELINE.ORBSLAM2.PLANNER_MAX_STEPS = 500
+_C.BASELINE.ORBSLAM2.DEPTH_DENORM = get_config().SIMULATOR.DEPTH_SENSOR.MAX_DEPTH
 
 
 def cfg(
diff --git a/baselines/slambased/README.md b/baselines/slambased/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d70d3ade3bca23c07ff653b4f6f86d3e0d974cc4
--- /dev/null
+++ b/baselines/slambased/README.md
@@ -0,0 +1,39 @@
+### Handcrafted agent baseline adopted from the paper "Benchmarking Classic and Learned Navigation in Complex 3D Environments"
+
+Project website: https://sites.google.com/view/classic-vs-learned-navigation
+Paper: https://arxiv.org/abs/1901.10915
+
+If you use this code or the provided environments in your research, please cite the following:
+
+    @ARTICLE{Navigation2019,
+           author = {{Mishkin}, Dmytro and {Dosovitskiy}, Alexey and {Koltun}, Vladlen},
+            title = "{Benchmarking Classic and Learned Navigation in Complex 3D Environments}",
+             year = 2019,
+            month = Jan,
+    archivePrefix = {arXiv},
+           eprint = {1901.10915},
+    }
+
+
+    
+## Dependencies:
+
+- conda
+- numpy
+- pytorch
+- ORBSLAM2
+
+
+## Tested with: 
+- Ubuntu 16.04
+- python 3.6
+- pytorch 0.4, 1.0
+
+
+- Install Anaconda https://www.anaconda.com/download/#linux
+
+- Install dependencies via ./install_deps.sh.  It should install everything except the datasets.
+
+Simple example of working with agents is shown in (../handcrafted-agent-example.ipynb)
+
+
diff --git a/baselines/slambased/data/mp3d3_small1k.yaml b/baselines/slambased/data/mp3d3_small1k.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c814c080db6abd7dab6d4ab57ffe449c0b31181d
--- /dev/null
+++ b/baselines/slambased/data/mp3d3_small1k.yaml
@@ -0,0 +1,69 @@
+%YAML:1.0
+
+#--------------------------------------------------------------------------------------------
+# Camera Parameters. Adjust them!
+#--------------------------------------------------------------------------------------------
+
+# Camera calibration and distortion parameters (OpenCV) 
+#For resolution 256x256, FOV 90 deg
+Camera.fx: 128.0 
+Camera.fy: 128.0
+Camera.cx: 127.0
+Camera.cy: 127.0
+
+
+Camera.k1: 0.0
+Camera.k2: 0.0
+Camera.p1: 0.0
+Camera.p2: 0.0
+
+# Camera frames per second 
+Camera.fps: 30.0
+
+# IR projector baseline times fx (aprox.)
+Camera.bf: 50.0
+
+# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
+Camera.RGB: 1
+
+# Close/Far threshold. Baseline times.
+#ThDepth: 40.0
+ThDepth: 70.0
+
+# Deptmap values factor
+DepthMapFactor: 1.0
+
+#--------------------------------------------------------------------------------------------
+# ORB Parameters
+#--------------------------------------------------------------------------------------------
+
+# ORB Extractor: Number of features per image
+ORBextractor.nFeatures: 1000
+
+# ORB Extractor: Scale factor between levels in the scale pyramid 	
+ORBextractor.scaleFactor: 1.2
+
+# ORB Extractor: Number of levels in the scale pyramid	
+ORBextractor.nLevels: 8
+
+# ORB Extractor: Fast threshold
+# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
+# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
+# You can lower these values if your images have low contrast			
+ORBextractor.iniThFAST: 5
+ORBextractor.minThFAST: 1
+
+#--------------------------------------------------------------------------------------------
+# Viewer Parameters
+#--------------------------------------------------------------------------------------------
+Viewer.KeyFrameSize: 0.1
+Viewer.KeyFrameLineWidth: 1
+Viewer.GraphLineWidth: 1
+Viewer.PointSize:2
+Viewer.CameraSize: 0.15
+Viewer.CameraLineWidth: 2
+Viewer.ViewpointX: 0
+Viewer.ViewpointY: -10
+Viewer.ViewpointZ: -0.1
+Viewer.ViewpointF: 2000
+
diff --git a/baselines/slambased/data/slam-based-agent.png b/baselines/slambased/data/slam-based-agent.png
new file mode 100644
index 0000000000000000000000000000000000000000..3aafc634fa034e68bb4fea5f50a72406a554db56
Binary files /dev/null and b/baselines/slambased/data/slam-based-agent.png differ
diff --git a/baselines/slambased/install_deps.sh b/baselines/slambased/install_deps.sh
new file mode 100755
index 0000000000000000000000000000000000000000..75002474f413b883da14c40423991d736ef744d8
--- /dev/null
+++ b/baselines/slambased/install_deps.sh
@@ -0,0 +1,62 @@
+#!/bin/bash
+
+DIR1=$(pwd)
+MAINDIR=$(pwd)/3rdparty
+mkdir ${MAINDIR}
+cd ${MAINDIR}
+#conda create -y -n "HandcraftedAgents" python=3.6
+source activate HandcraftedAgents
+conda install opencv -y
+conda install pytorch torchvision -c pytorch -y
+conda install -c conda-forge imageio -y
+conda install ffmpeg -c conda-forge -y
+cd ${MAINDIR}
+mkdir eigen3
+cd eigen3
+wget http://bitbucket.org/eigen/eigen/get/3.3.5.tar.gz
+tar -xzf 3.3.5.tar.gz
+cd eigen-eigen-b3f3d4950030
+mkdir build
+cd build
+cmake .. -DCMAKE_INSTALL_PREFIX=${MAINDIR}/eigen3_installed/
+make install
+cd ${MAINDIR}
+wget https://sourceforge.net/projects/glew/files/glew/2.1.0/glew-2.1.0.zip
+unzip glew-2.1.0.zip
+cd glew-2.1.0/
+cd build
+cmake ./cmake  -DCMAKE_INSTALL_PREFIX=${MAINDIR}/glew_installed
+make -j4
+make install
+cd ${MAINDIR}
+#pip install numpy --upgrade
+rm Pangolin -rf
+git clone https://github.com/stevenlovegrove/Pangolin.git
+cd Pangolin
+mkdir build
+cd build
+cmake .. -DCMAKE_PREFIX_PATH=${MAINDIR}/glew_installed/ -DCMAKE_LIBRARY_PATH=${MAINDIR}/glew_installed/lib/ -DCMAKE_INSTALL_PREFIX=${MAINDIR}/pangolin_installed
+cmake --build .
+cd ${MAINDIR}
+rm ORB_SLAM2 -rf
+rm ORB_SLAM2-PythonBindings -rf
+git clone https://github.com/ducha-aiki/ORB_SLAM2
+git clone https://github.com/ducha-aiki/ORB_SLAM2-PythonBindings
+cd ${MAINDIR}/ORB_SLAM2
+sed -i "s,cmake .. -DCMAKE_BUILD_TYPE=Release,cmake .. -DCMAKE_BUILD_TYPE=Release -DEIGEN3_INCLUDE_DIR=${MAINDIR}/eigen3_installed/include/eigen3/ -DCMAKE_INSTALL_PREFIX=${MAINDIR}/ORBSLAM2_installed ,g" build.sh
+ln -s ${MAINDIR}/eigen3_installed/include/eigen3/Eigen ${MAINDIR}/ORB_SLAM2/Thirdparty/g2o/g2o/core/Eigen
+./build.sh
+cd build
+make install
+cd ${MAINDIR}
+cd ORB_SLAM2-PythonBindings/src
+ln -s ${MAINDIR}/eigen3_installed/include/eigen3/Eigen Eigen
+cd ${MAINDIR}/ORB_SLAM2-PythonBindings
+mkdir build
+cd build
+CONDA_DIR=$(dirname $(dirname $(which conda)))
+sed -i "s,lib/python3.5/dist-packages,${CONDA_DIR}/envs/HandcraftedAgents/lib/python3.6/site-packages/,g" ../CMakeLists.txt
+cmake .. -DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") -DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))")/libpython3.6m.so -DPYTHON_EXECUTABLE:FILEPATH=`which python` -DCMAKE_LIBRARY_PATH=${MAINDIR}/ORBSLAM2_installed/lib -DCMAKE_INCLUDE_PATH=${MAINDIR}/ORBSLAM2_installed/include;${MAINDIR}/eigen3_installed/include/eigen3 -DCMAKE_INSTALL_PREFIX=${MAINDIR}/pyorbslam2_installed 
+make
+make install
+cp ${MAINDIR}/ORB_SLAM2/Vocabulary/ORBvoc.txt ${DIR1}/data/
diff --git a/baselines/slambased/mappers.py b/baselines/slambased/mappers.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e873ba685af6daaf9107ea22b10f48bac94eb42
--- /dev/null
+++ b/baselines/slambased/mappers.py
@@ -0,0 +1,122 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from baselines.slambased.reprojection import (
+    get_map_size_in_cells,
+    project2d_pcl_into_worldmap,
+    reproject_local_to_global,
+)
+
+
+def depth2local3d(depth, fx, fy, cx, cy):
+    """Projects depth map to 3d point cloud
+    with origin in the camera focus
+    """
+    device = depth.device
+    h, w = depth.squeeze().size()
+    x = torch.linspace(0, w - 1, w).to(device)
+    y = torch.linspace(0, h - 1, h).to(device)
+    xv, yv = torch.meshgrid([x, y])
+    dfl = depth.t().flatten()
+    return torch.cat(
+        [
+            (dfl * (xv.flatten() - cx) / fx).unsqueeze(-1),  # x
+            (dfl * (yv.flatten() - cy) / fy).unsqueeze(-1),  # y
+            dfl.unsqueeze(-1),
+        ],
+        dim=1,
+    )  # z
+
+
+def pcl_to_obstacles(pts3d, map_size=40, cell_size=0.2, min_pts= 10):
+    """Counts number of 3d points in 2d map cell.
+    Height is sum-pooled.
+    """
+    device = pts3d.device
+    map_size_in_cells = get_map_size_in_cells(map_size, cell_size) - 1
+    init_map = torch.zeros(
+        (map_size_in_cells, map_size_in_cells), device=device
+    )
+    if len(pts3d) <= 1:
+        return init_map
+    num_pts, dim = pts3d.size()
+    pts2d = torch.cat([pts3d[:, 2:3], pts3d[:, 0:1]], dim=1)
+    data_idxs = torch.round(
+        project2d_pcl_into_worldmap(pts2d, map_size, cell_size)
+    )
+    if len(data_idxs) > min_pts:
+        u, counts = np.unique(
+            data_idxs.detach().cpu().numpy(), axis=0, return_counts=True
+        )
+        init_map[u[:, 0], u[:, 1]] = torch.from_numpy(counts).to(
+            dtype=torch.float32, device=device
+        )
+    return init_map
+
+
+class DirectDepthMapper(nn.Module):
+    """Estimates obstacle map given the depth image
+    ToDo: replace numpy histogram counting with differentiable
+    pytorch soft count like in
+    https://papers.nips.cc/paper/7545-unsupervised-learning-of-shape-and-pose-with-differentiable-point-clouds.pdf
+    """
+
+    def __init__(
+        self,
+        camera_height=0,
+        near_th=0.1,
+        far_th=4.0,
+        h_min=0.0,
+        h_max=1.0,
+        map_size=40,
+        map_cell_size=0.1,
+        device=torch.device("cpu"),
+        **kwargs
+    ):
+        super(DirectDepthMapper, self).__init__()
+        self.device = device
+        self.near_th = near_th
+        self.far_th = far_th
+        self.h_min_th = h_min
+        self.h_max_th = h_max
+        self.camera_height = camera_height
+        self.map_size_meters = map_size
+        self.map_cell_size = map_cell_size
+        return
+
+    def forward(self, depth, pose=torch.eye(4).float()):
+        self.device = depth.device
+        # Works for FOV = 90 degrees
+        # Should be adjusted, if FOV changed
+        self.fx = float(depth.size(1)) / 2.0
+        self.fy = float(depth.size(0)) / 2.0
+        self.cx = int(self.fx) - 1
+        self.cy = int(self.fy) - 1
+        pose = pose.to(self.device)
+        local_3d_pcl = depth2local3d(
+            depth, self.fx, self.fy, self.cx, self.cy
+        )
+        idxs = (torch.abs(local_3d_pcl[:, 2]) < self.far_th) * (
+            torch.abs(local_3d_pcl[:, 2]) >= self.near_th
+        )
+        survived_points = local_3d_pcl[idxs]
+        if len(survived_points) < 20:
+            map_size_in_cells = (
+                get_map_size_in_cells(self.map_size_meters,
+                                      self.map_cell_size) - 1
+            )
+            init_map = torch.zeros(
+                (map_size_in_cells, map_size_in_cells), device=self.device
+            )
+            return init_map
+        global_3d_pcl = reproject_local_to_global(survived_points, pose)[:, :3]
+        # Because originally y looks down and from agent camera height
+        global_3d_pcl[:, 1] = -global_3d_pcl[:, 1] + self.camera_height
+        idxs = (global_3d_pcl[:, 1] > self.h_min_th) * (
+            global_3d_pcl[:, 1] < self.h_max_th
+        )
+        global_3d_pcl = global_3d_pcl[idxs]
+        obstacle_map = pcl_to_obstacles(
+            global_3d_pcl, self.map_size_meters, self.map_cell_size
+        )
+        return obstacle_map
diff --git a/baselines/slambased/monodepth.py b/baselines/slambased/monodepth.py
new file mode 100644
index 0000000000000000000000000000000000000000..d047a61703586ec1779b84a5af9a1cd304e8a386
--- /dev/null
+++ b/baselines/slambased/monodepth.py
@@ -0,0 +1,573 @@
+"""
+The code below is taked from https://github.com/JunjH/Revisiting_Single_Depth_Estimation
+Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps With Accurate Object Boundaries
+Junjie Hu and Mete Ozay and Yan Zhang and Takayuki Okatani
+WACV 2019
+"""
+
+
+import torch
+import torch.nn.parallel
+"""
+ResNet code gently borrowed from
+https://github.com/pytorch/vision/blob/master/torchvision/models/py
+"""
+
+import torch.nn as nn
+import math
+import torch.utils.model_zoo as model_zoo
+import torch.nn.functional as F
+import torch
+import numpy as np
+import pdb
+import os
+from PIL import Image
+accimage = None
+from torchvision import transforms, utils
+
+
+__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
+           'resnet152']
+
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+}
+
+
+def conv3x3(in_planes, out_planes, stride=1):
+    "3x3 convolution with padding"
+    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
+                     padding=1, bias=False)
+
+class BasicBlock(nn.Module):
+    expansion = 1
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None):
+        super(BasicBlock, self).__init__()
+        self.conv1 = conv3x3(inplanes, planes, stride)
+        self.bn1 = nn.BatchNorm2d(planes)
+        self.relu = nn.ReLU(inplace=True)
+        self.conv2 = conv3x3(planes, planes)
+        self.bn2 = nn.BatchNorm2d(planes)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        residual = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+
+        if self.downsample is not None:
+            residual = self.downsample(x)
+
+        out += residual
+        out = self.relu(out)
+
+        return out
+
+
+class Bottleneck(nn.Module):
+    expansion = 4
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None):
+        super(Bottleneck, self).__init__()
+        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
+        self.bn1 = nn.BatchNorm2d(planes)
+        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
+                               padding=1, bias=False)
+        self.bn2 = nn.BatchNorm2d(planes)
+        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
+        self.bn3 = nn.BatchNorm2d(planes * 4)
+        self.relu = nn.ReLU(inplace=True)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        residual = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+        out = self.relu(out)
+
+        out = self.conv3(out)
+        out = self.bn3(out)
+
+        if self.downsample is not None:
+            residual = self.downsample(x)
+
+        out += residual
+        out = self.relu(out)
+
+        return out
+
+
+class ResNet(nn.Module):
+
+    def __init__(self, block, layers, num_classes=1000):
+        self.inplanes = 64
+        super(ResNet, self).__init__()
+        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
+                               bias=False)
+        self.bn1 = nn.BatchNorm2d(64)
+        self.relu = nn.ReLU(inplace=True)
+        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+        self.layer1 = self._make_layer(block, 64, layers[0])
+        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
+        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
+        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
+        self.avgpool = nn.AvgPool2d(7, stride=1)
+        self.fc = nn.Linear(512 * block.expansion, num_classes)
+
+        for m in self.modules():
+            if isinstance(m, nn.Conv2d):
+                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+                m.weight.data.normal_(0, math.sqrt(2. / n))
+            elif isinstance(m, nn.BatchNorm2d):
+                m.weight.data.fill_(1)
+                m.bias.data.zero_()
+
+    def _make_layer(self, block, planes, blocks, stride=1):
+        downsample = None
+        if stride != 1 or self.inplanes != planes * block.expansion:
+            downsample = nn.Sequential(
+                nn.Conv2d(self.inplanes, planes * block.expansion,
+                          kernel_size=1, stride=stride, bias=False),
+                nn.BatchNorm2d(planes * block.expansion),
+            )
+
+        layers = []
+        layers.append(block(self.inplanes, planes, stride, downsample))
+        self.inplanes = planes * block.expansion
+        for i in range(1, blocks):
+            layers.append(block(self.inplanes, planes))
+
+        return nn.Sequential(*layers)
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = self.bn1(x)
+        x = self.relu(x)
+        x = self.maxpool(x)
+
+        x = self.layer1(x)
+        x = self.layer2(x)
+        x = self.layer3(x)
+        x = self.layer4(x)
+
+        x = self.avgpool(x)
+        x = x.view(x.size(0), -1)
+        x = self.fc(x)
+
+        return x
+
+def resnet18(pretrained=False, **kwargs):
+    """Constructs a ResNet-18 model.
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+    """
+    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
+    if pretrained:
+        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
+    return model
+
+
+def resnet34(pretrained=False, **kwargs):
+    """Constructs a ResNet-34 model.
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+    """
+    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
+    if pretrained:
+        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
+    return model
+
+
+def resnet50(pretrained=False, **kwargs):
+    """Constructs a ResNet-50 model.
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+    """
+    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
+    if pretrained:
+        model.load_state_dict(model_zoo.load_url(model_urls['resnet50'], 'pretrained_model/encoder'))
+    return model
+
+
+def resnet101(pretrained=False, **kwargs):
+    """Constructs a ResNet-101 model.
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+    """
+    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
+    if pretrained:
+        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
+    return model
+
+
+def resnet152(pretrained=False, **kwargs):
+    """Constructs a ResNet-152 model.
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+    """
+    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
+    if pretrained:
+        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
+    return model
+
+
+class model(nn.Module):
+    def __init__(self, Encoder, num_features, block_channel):
+
+        super(model, self).__init__()
+
+        self.E = Encoder
+        self.D = D(num_features)
+        self.MFF = MFF(block_channel)
+        self.R = R(block_channel)
+
+
+    def forward(self, x):
+        x_block1, x_block2, x_block3, x_block4 = self.E(x)
+        x_decoder = self.D(x_block1, x_block2, x_block3, x_block4)
+        x_mff = self.MFF(x_block1, x_block2, x_block3, x_block4,[x_decoder.size(2),x_decoder.size(3)])
+        out = self.R(torch.cat((x_decoder, x_mff), 1))
+
+        return out
+
+
+class _UpProjection(nn.Sequential):
+
+    def __init__(self, num_input_features, num_output_features):
+        super(_UpProjection, self).__init__()
+
+        self.conv1 = nn.Conv2d(num_input_features, num_output_features,
+                               kernel_size=5, stride=1, padding=2, bias=False)
+        self.bn1 = nn.BatchNorm2d(num_output_features)
+        self.relu = nn.ReLU(inplace=True)
+        self.conv1_2 = nn.Conv2d(num_output_features, num_output_features,
+                                 kernel_size=3, stride=1, padding=1, bias=False)
+        self.bn1_2 = nn.BatchNorm2d(num_output_features)
+
+        self.conv2 = nn.Conv2d(num_input_features, num_output_features,
+                               kernel_size=5, stride=1, padding=2, bias=False)
+        self.bn2 = nn.BatchNorm2d(num_output_features)
+
+    def forward(self, x, size):
+        x = F.upsample(x, size=size, mode='bilinear')
+        x_conv1 = self.relu(self.bn1(self.conv1(x)))
+        bran1 = self.bn1_2(self.conv1_2(x_conv1))
+        bran2 = self.bn2(self.conv2(x))
+
+        out = self.relu(bran1 + bran2)
+
+        return out
+
+class E_resnet(nn.Module):
+
+    def __init__(self, original_model, num_features = 2048):
+        super(E_resnet, self).__init__()
+        self.conv1 = original_model.conv1
+        self.bn1 = original_model.bn1
+        self.relu = original_model.relu
+        self.maxpool = original_model.maxpool
+
+        self.layer1 = original_model.layer1
+        self.layer2 = original_model.layer2
+        self.layer3 = original_model.layer3
+        self.layer4 = original_model.layer4
+
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = self.bn1(x)
+        x = self.relu(x)
+        x = self.maxpool(x)
+
+        x_block1 = self.layer1(x)
+        x_block2 = self.layer2(x_block1)
+        x_block3 = self.layer3(x_block2)
+        x_block4 = self.layer4(x_block3)
+
+        return x_block1, x_block2, x_block3, x_block4
+
+
+class D(nn.Module):
+
+    def __init__(self, num_features = 2048):
+        super(D, self).__init__()
+        self.conv = nn.Conv2d(num_features, num_features //
+                               2, kernel_size=1, stride=1, bias=False)
+        num_features = num_features // 2
+        self.bn = nn.BatchNorm2d(num_features)
+
+        self.up1 = _UpProjection(
+            num_input_features=num_features, num_output_features=num_features // 2)
+        num_features = num_features // 2
+
+        self.up2 = _UpProjection(
+            num_input_features=num_features, num_output_features=num_features // 2)
+        num_features = num_features // 2
+
+        self.up3 = _UpProjection(
+            num_input_features=num_features, num_output_features=num_features // 2)
+        num_features = num_features // 2
+
+        self.up4 = _UpProjection(
+            num_input_features=num_features, num_output_features=num_features // 2)
+        num_features = num_features // 2
+
+
+    def forward(self, x_block1, x_block2, x_block3, x_block4):
+        x_d0 = F.relu(self.bn(self.conv(x_block4)))
+        x_d1 = self.up1(x_d0, [x_block3.size(2), x_block3.size(3)])
+        x_d2 = self.up2(x_d1, [x_block2.size(2), x_block2.size(3)])
+        x_d3 = self.up3(x_d2, [x_block1.size(2), x_block1.size(3)])
+        x_d4 = self.up4(x_d3, [x_block1.size(2)*2, x_block1.size(3)*2])
+
+        return x_d4
+
+class MFF(nn.Module):
+
+    def __init__(self, block_channel, num_features=64):
+
+        super(MFF, self).__init__()
+
+        self.up1 = _UpProjection(
+            num_input_features=block_channel[0], num_output_features=16)
+
+        self.up2 = _UpProjection(
+            num_input_features=block_channel[1], num_output_features=16)
+
+        self.up3 = _UpProjection(
+            num_input_features=block_channel[2], num_output_features=16)
+
+        self.up4 = _UpProjection(
+            num_input_features=block_channel[3], num_output_features=16)
+
+        self.conv = nn.Conv2d(
+            num_features, num_features, kernel_size=5, stride=1, padding=2, bias=False)
+        self.bn = nn.BatchNorm2d(num_features)
+
+
+    def forward(self, x_block1, x_block2, x_block3, x_block4, size):
+        x_m1 = self.up1(x_block1, size)
+        x_m2 = self.up2(x_block2, size)
+        x_m3 = self.up3(x_block3, size)
+        x_m4 = self.up4(x_block4, size)
+
+        x = self.bn(self.conv(torch.cat((x_m1, x_m2, x_m3, x_m4), 1)))
+        x = F.relu(x)
+
+        return x
+
+
+class R(nn.Module):
+    def __init__(self, block_channel):
+
+        super(R, self).__init__()
+
+        num_features = 64 + block_channel[3]//32
+        self.conv0 = nn.Conv2d(num_features, num_features,
+                               kernel_size=5, stride=1, padding=2, bias=False)
+        self.bn0 = nn.BatchNorm2d(num_features)
+
+        self.conv1 = nn.Conv2d(num_features, num_features,
+                               kernel_size=5, stride=1, padding=2, bias=False)
+        self.bn1 = nn.BatchNorm2d(num_features)
+
+        self.conv2 = nn.Conv2d(
+            num_features, 1, kernel_size=5, stride=1, padding=2, bias=True)
+
+    def forward(self, x):
+        x0 = self.conv0(x)
+        x0 = self.bn0(x0)
+        x0 = F.relu(x0)
+
+        x1 = self.conv1(x0)
+        x1 = self.bn1(x1)
+        x1 = F.relu(x1)
+
+        x2 = self.conv2(x1)
+
+        return x2
+def _is_pil_image(img):
+    return isinstance(img, Image.Image)
+
+def _is_numpy_image(img):
+    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
+
+class Scale(object):
+    def __init__(self, size):
+        self.size = size
+
+    def __call__(self, image):
+        image = self.changeScale(image,self.size)
+
+        return image
+
+    def changeScale(self, img, size, interpolation=Image.BILINEAR):
+        ow, oh = size
+
+        return img.resize((ow, oh), interpolation)
+
+class CenterCrop(object):
+    def __init__(self, size):
+        self.size = size
+
+    def __call__(self, image):
+        image = self.centerCrop(image,self.size)
+
+        return image
+
+    def centerCrop(self,image, size):
+        w1, h1 = image.size
+        tw, th = size
+
+        if w1 == tw and h1 == th:
+            return image
+
+        x1 = int(round((w1 - tw) / 2.))
+        y1 = int(round((h1 - th) / 2.))
+
+        image = image.crop((x1, y1, tw+x1, th+y1))
+
+        return image
+
+
+class ToTensor(object):
+    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor.
+    Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
+    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
+    """
+
+    def __call__(self, image):
+        image = self.to_tensor(image)
+
+        return image
+
+
+    def to_tensor(self,pic):
+        if not(_is_pil_image(pic) or _is_numpy_image(pic)):
+            raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
+
+        if isinstance(pic, np.ndarray):
+
+            img = torch.from_numpy(pic.transpose((2, 0, 1)))
+            return img.float().div(255)
+
+
+        if accimage is not None and isinstance(pic, accimage.Image):
+            nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
+            pic.copyto(nppic)
+            return torch.from_numpy(nppic)
+
+        # handle PIL Image
+        if pic.mode == 'I':
+            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
+        elif pic.mode == 'I;16':
+            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
+        else:
+            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
+        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
+        if pic.mode == 'YCbCr':
+            nchannel = 3
+        elif pic.mode == 'I;16':
+            nchannel = 1
+        else:
+            nchannel = len(pic.mode)
+        img = img.view(pic.size[1], pic.size[0], nchannel)
+        # put it from HWC to CHW format
+        # yikes, this transpose takes 80% of the loading time/CPU
+        img = img.transpose(0, 1).transpose(0, 2).contiguous()
+        if isinstance(img, torch.ByteTensor):
+            return img.float().div(255)
+        else:
+            return img
+
+
+
+class Normalize(object):
+    def __init__(self, mean, std):
+        self.mean = mean
+        self.std = std
+
+    def __call__(self, image):
+        image = self.normalize(image, self.mean, self.std)
+
+        return image
+
+    def normalize(self, tensor, mean, std):
+        for t, m, s in zip(tensor, mean, std):
+            t.sub_(m).div_(s)
+
+        return tensor
+
+
+
+def define_model(is_resnet, is_densenet, is_senet):
+    if is_resnet:
+        original_model = resnet50(pretrained = False)
+        Encoder = E_resnet(original_model)
+        model1 = model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048])
+    if is_densenet:
+        original_model = dendensenet161(pretrained=False)
+        Encoder = E_densenet(original_model)
+        model1 = model(Encoder, num_features=2208, block_channel = [192, 384, 1056, 2208])
+    if is_senet:
+        original_model = senet154(pretrained=False)
+        Encoder = E_senet(original_model)
+        model1 = model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048])
+
+    return model1
+
+
+class MonoDepthEstimator:
+    def __init__(self, checkpoint='./pretrained_model/model_resnet'):
+        self.model = define_model(is_resnet=True, is_densenet=False, is_senet=False)
+        self.model = torch.nn.DataParallel(self.model).cuda()
+        cpt = torch.load(checkpoint)
+        if 'state_dict' in cpt.keys():
+            cpt = cpt['state_dict']
+        self.model.load_state_dict(cpt)
+        self.model.eval()
+        self.init_preprocessor()
+
+    def init_preprocessor(self):
+        __imagenet_stats = {'mean': [0.485, 0.456, 0.406],
+                            'std': [0.229, 0.224, 0.225]}
+
+        self.transform = transforms.Compose([
+                            Scale([320, 240]),
+                            #CenterCrop([304, 228]),
+                            ToTensor(),
+                            Normalize(__imagenet_stats['mean'],
+                                      __imagenet_stats['std'])
+                         ])
+
+    def preprocess(self, image):
+        image_torch = self.transform(image).unsqueeze(0)
+        return image_torch.cuda()
+
+    def compute_depth(self, image):
+        # Input: image is a PIL image
+        # Output: depth is a numpy array
+        image_torch = self.preprocess(image)
+        #print(image_torch.size())
+        depth_torch = self.model(image_torch)
+        depth = depth_torch.view(depth_torch.size(2),depth_torch.size(3)).data.cpu().numpy()
+        return depth
+
diff --git a/baselines/slambased/path_planners.py b/baselines/slambased/path_planners.py
new file mode 100644
index 0000000000000000000000000000000000000000..adc2eb97bebf5db3c2ad971d86295f1c08179579
--- /dev/null
+++ b/baselines/slambased/path_planners.py
@@ -0,0 +1,512 @@
+import numpy as np
+import torch
+import torch.nn.functional as F
+import torch.nn as nn
+import matplotlib.pyplot as plt
+from baselines.slambased.utils import generate_2dgrid
+
+
+def safe_roi_2d(array2d, ymin, ymax, xmin, xmax):
+    (h, w) = array2d.shape
+    return max(0, ymin), min(ymax, h), max(0, xmin), min(xmax, w)
+
+
+def f2ind(ten, i):
+    # Float to index
+    return torch.round(ten[i]).long()
+
+
+def init_neights_to_channels(ks=3):
+    r"""Convolutional kernel,
+    which maps nighborhood into channels
+    """
+    weights = np.zeros((ks * ks, 1, ks, ks), dtype=np.float32)
+    for y in range(ks):
+        for x in range(ks):
+            weights[x * ks + y, 0, y, x] = 1.0
+    return weights
+
+
+class SoftArgMin(nn.Module):
+    def __init__(self, beta=5):
+        super(SoftArgMin, self).__init__()
+        self.beta = beta
+        return
+
+    def forward(self, x, coords2d=None):
+        bx_sm = F.softmax(self.beta * (-x).view(1, -1), dim=1)
+        if coords2d is None:
+            coords2d = generate_2dgrid(x.size(2), x.size(3), False)
+        coords2d_flat = coords2d.view(2, -1)
+        return (bx_sm.expand_as(coords2d_flat) * coords2d_flat).sum(
+            dim=1
+        ) / bx_sm.sum(dim=1)
+
+
+class HardArgMin(nn.Module):
+    def __init__(self):
+        super(HardArgMin, self).__init__()
+        return
+
+    def forward(self, x, coords2d=None):
+        val, idx = x.view(-1).min(dim=0)
+        if coords2d is None:
+            coords2d = generate_2dgrid(x.size(2), x.size(3), False)
+        coords2d_flat = coords2d.view(2, -1)
+        return coords2d_flat[:, idx].view(2)
+
+
+class DifferentiableStarPlanner(nn.Module):
+    def __init__(
+        self,
+        max_steps=500,
+        visualize=False,
+        preprocess=False,
+        beta=100,
+        connectivity="eight",
+        device=torch.device("cpu"),
+        **kwargs
+    ):
+        super(DifferentiableStarPlanner, self).__init__()
+        self.eps = 1e-12
+        self.max_steps = max_steps
+        self.visualize = visualize
+        self.inf = 1e7
+        self.ob_cost = 10000.0
+        self.device = device
+        self.beta = beta
+        self.preprocess = preprocess
+        # self.argmin = SoftArgMin(beta)
+        self.argmin = HardArgMin()
+        self.neights2channels = nn.Conv2d(1, 9, kernel_size=(3, 3), bias=False)
+        self.neights2channels.weight.data = torch.from_numpy(
+            init_neights_to_channels(3)
+        )
+        self.neights2channels.to(device)
+        self.preprocessNet = nn.Conv2d(
+            1, 1, kernel_size=(3, 3), padding=1, bias=False
+        )
+        self.preprocessNet.weight.data = torch.from_numpy(
+            np.array(
+                [
+                    [
+                        [
+                            [0.00001, 0.0001, 0.00001],
+                            [0.0001, 1, 0.0001],
+                            [0.00001, 0.0001, 0.00001],
+                        ]
+                    ]
+                ],
+                dtype=np.float32,
+            )
+        )
+        self.preprocessNet.to(device)
+        if connectivity == "eight":
+            self.gx_to_right = nn.Conv2d(1, 1, kernel_size=(1, 3), bias=False)
+            self.gx_to_right.weight.data = torch.from_numpy(
+                np.array([[[[0, 1, -1]]]], dtype=np.float32)
+            )
+            self.gx_to_right.to(device)
+
+            self.gx_to_left = nn.Conv2d(1, 1, kernel_size=(1, 3), bias=False)
+            self.gx_to_left.weight.data = torch.from_numpy(
+                np.array([[[[-1, 1, 0]]]], dtype=np.float32)
+            )
+            self.gx_to_left.to(device)
+
+            self.gy_to_up = nn.Conv2d(1, 1, kernel_size=(3, 1), bias=False)
+            self.gy_to_up.weight.data = torch.from_numpy(
+                np.array([[[[0], [1], [-1]]]], dtype=np.float32)
+            )
+            self.gy_to_up.to(device)
+
+            self.gy_to_down = nn.Conv2d(1, 1, kernel_size=(3, 1), bias=False)
+            self.gy_to_down.weight.data = torch.from_numpy(
+                np.array([[[[-1], [1], [0]]]], dtype=np.float32)
+            )
+            self.gy_to_down.to(device)
+        else:
+            raise ValueError('Only "eight" connectivity now supported')
+        return
+
+    def preprocess_obstacle_map(self, obstacle_map):
+        if self.preprocess:
+            return self.preprocessNet(
+                obstacle_map
+            )
+        return obstacle_map
+
+    def coords2grid(self, node_coords, h, w):
+        grid = node_coords.squeeze() - torch.FloatTensor(
+            (h / 2.0, w / 2.0)
+        ).to(self.device)
+        grid = grid / torch.FloatTensor((h / 2.0, w / 2.0)).to(self.device)
+        return grid.view(1, 1, 1, 2).flip(3)
+
+    def init_closelistmap(self):
+        return torch.zeros_like(
+            self.start_map
+        ).float()
+
+    def init_openlistmap(self):
+        return self.start_map.clone()
+
+    def init_g_map(self):
+        return torch.clamp(
+            self.inf
+            * (torch.ones_like(self.start_map) - self.start_map.clone()),
+            min=0,
+            max=self.inf,
+        )
+
+    def safe_roi_2d(self, ymin, ymax, xmin, xmax):
+        return (
+            int(max(0, torch.round(ymin).item())),
+            int(min(torch.round(ymax).item(), self.height)),
+            int(max(0, torch.round(xmin).item())),
+            int(min(torch.round(xmax).item(), self.width)),
+        )
+
+    def forward(
+        self,
+        obstacles,
+        coords,
+        start_map,
+        goal_map,
+        non_obstacle_cost_map=None,
+        additional_steps=50,
+        return_path=True,
+    ):
+        self.trav_init_time = 0
+        self.trav_mask_time = 0
+        self.trav_soft_time = 0
+        self.conv_time = 0
+        self.close_time = 0
+
+        self.obstacles = self.preprocess_obstacle_map(
+            obstacles.to(self.device)
+        )
+        self.start_map = start_map.to(self.device)
+        self.been_there = torch.zeros_like(self.start_map).to(
+            torch.device("cpu")
+        )
+        self.coords = coords.to(self.device)
+        self.goal_map = goal_map.to(self.device)
+        self.been_there = torch.zeros_like(self.goal_map).to(self.device)
+        self.height = obstacles.size(2)
+        self.width = obstacles.size(3)
+        m, goal_idx = torch.max(self.goal_map.view(-1), 0)
+        c_map = self.calculate_local_path_costs(
+            non_obstacle_cost_map
+        )
+        # c_map might be non persistent in map update
+        self.g_map = self.init_g_map()
+        self.close_list_map = self.init_closelistmap()
+        self.open_list_map = self.init_openlistmap()
+        not_done = False
+        step = 0
+        stopped_by_max_iter = False
+        if self.visualize:
+            self.fig, self.ax = plt.subplots(1, 1)
+            self.image = self.ax.imshow(
+                self.g_map.squeeze().cpu().detach().numpy().astype(np.float32),
+                animated=True,
+            )
+            self.fig.canvas.draw()
+        not_done = (self.close_list_map.view(-1)[goal_idx].item() < 1.0) or (
+            self.g_map.view(-1)[goal_idx].item() >= 0.9 * self.ob_cost
+        )
+        rad = 1
+        self.start_coords = (
+            (self.coords * self.start_map.expand_as(self.coords))
+            .sum(dim=2)
+            .sum(dim=2)
+            .squeeze()
+        )
+        node_coords = self.start_coords
+        self.goal_coords = (
+            (self.coords * self.goal_map.expand_as(self.coords))
+            .sum(dim=2)
+            .sum(dim=2)
+            .squeeze()
+        )
+        self.max_steps = 4 * int(
+            torch.sqrt(
+                ((self.start_coords - self.goal_coords) ** 2).sum() + 1e-6
+            ).item()
+        )
+        while not_done:
+            ymin, ymax, xmin, xmax = self.safe_roi_2d(
+                node_coords[0] - rad,
+                node_coords[0] + rad + 1,
+                node_coords[1] - rad,
+                node_coords[1] + rad + 1,
+            )
+            if (
+                (ymin - 1 > 0)
+                and (xmin - 1 > 0)
+                and (ymax + 1 < self.height)
+                and (xmax + 1 < self.width)
+            ):
+                n2c = self.neights2channels(
+                    self.g_map[:, :, ymin - 1:ymax + 1, xmin - 1:xmax + 1]
+                )
+                self.g_map[:, :, ymin:ymax, xmin:xmax] = torch.min(
+                    self.g_map[:, :, ymin:ymax, xmin:xmax].clone(),
+                    (n2c + c_map[:, :, ymin:ymax, xmin:xmax]).min(
+                        dim=1, keepdim=True
+                    )[0],
+                )
+                self.close_list_map[:, :, ymin:ymax, xmin:xmax] = torch.max(
+                    self.close_list_map[:, :, ymin:ymax, xmin:xmax],
+                    self.open_list_map[:, :, ymin:ymax, xmin:xmax],
+                )
+                self.open_list_map[:, :, ymin:ymax, xmin:xmax] = F.relu(
+                    F.max_pool2d(
+                        self.open_list_map[
+                            :, :, ymin - 1:ymax + 1, xmin - 1:xmax + 1
+                        ],
+                        3,
+                        stride=1,
+                        padding=0,
+                    )
+                    - self.close_list_map[:, :, ymin:ymax, xmin:xmax]
+                    - self.obstacles[:, :, ymin:ymax, xmin:xmax]
+                )
+            else:
+                self.g_map = torch.min(
+                    self.g_map,
+                    (
+                        self.neights2channels(
+                            F.pad(self.g_map, (1, 1, 1, 1), "replicate")
+                        )
+                        + c_map
+                    ).min(dim=1, keepdim=True)[0],
+                )
+                self.close_list_map = torch.max(
+                    self.close_list_map, self.open_list_map
+                )
+                self.open_list_map = F.relu(
+                    F.max_pool2d(self.open_list_map, 3, stride=1, padding=1)
+                    - self.close_list_map
+                    - self.obstacles
+                )
+            step += 1
+            if step >= self.max_steps:
+                stopped_by_max_iter = True
+                break
+            not_done = (
+                self.close_list_map.view(-1)[goal_idx].item() < 1.0
+            ) or (self.g_map.view(-1)[goal_idx].item() >= 0.1 * self.inf)
+            rad += 1
+        if not stopped_by_max_iter:
+            for i in range(additional_steps):
+                # now propagating beyong start point
+                self.g_map = torch.min(
+                    self.g_map,
+                    (
+                        self.neights2channels(
+                            F.pad(self.g_map, (1, 1, 1, 1), "replicate")
+                        )
+                        + c_map
+                    ).min(dim=1, keepdim=True)[0],
+                )
+                self.close_list_map = torch.max(
+                    self.close_list_map, self.open_list_map
+                )
+                self.open_list_map = F.relu(
+                    F.max_pool2d(self.open_list_map, 3, stride=1, padding=1)
+                    - self.close_list_map
+                    - self.obstacles
+                )
+        if return_path:
+            out_path, cost = self.reconstruct_path()
+            return out_path, cost
+        return
+
+    def calculate_local_path_costs(self, non_obstacle_cost_map=None):
+        coords = self.coords
+        h = coords.size(2)
+        w = coords.size(3)
+        obstacles_pd = F.pad(self.obstacles, (1, 1, 1, 1), "replicate")
+        if non_obstacle_cost_map is None:
+            learned_bias = torch.ones_like(self.obstacles).to(
+                obstacles_pd.device
+            )
+        else:
+            learned_bias = non_obstacle_cost_map.to(obstacles_pd.device)
+        left_diff_sq = (
+            self.gx_to_left(
+                F.pad(coords[:, 1:2, :, :], (1, 1, 0, 0), "replicate")
+            )
+            ** 2
+        )
+        right_diff_sq = (
+            self.gx_to_right(
+                F.pad(coords[:, 1:2, :, :], (1, 1, 0, 0), "replicate")
+            )
+            ** 2
+        )
+        up_diff_sq = (
+            self.gy_to_up(
+                F.pad(coords[:, 0:1, :, :], (0, 0, 1, 1), "replicate")
+            )
+            ** 2
+        )
+        down_diff_sq = (
+            self.gy_to_down(
+                F.pad(coords[:, 0:1, :, :], (0, 0, 1, 1), "replicate")
+            )
+            ** 2
+        )
+        out = torch.cat([
+                # Order in from up to down, from left to right
+                # hopefully same as in PyTorch
+                torch.sqrt(left_diff_sq + up_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 0:h, 0:w],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(left_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 0:h, 1:w + 1],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(left_diff_sq + down_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 2:h + 2, 0:w],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(up_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 0:h, 1:w + 1],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                0 * right_diff_sq
+                + self.ob_cost
+                * obstacles_pd[:, :, 1:h + 1, 1:w + 1],  # current center
+                torch.sqrt(down_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 2:h + 2, 1:w + 1],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(right_diff_sq + up_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 0:h, 2:w + 2],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(right_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 1:h + 1, 2:w + 2],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+                torch.sqrt(right_diff_sq + down_diff_sq + self.eps)
+                + self.ob_cost
+                * torch.max(
+                    obstacles_pd[:, :, 2:h + 2, 2:w + 2],
+                    obstacles_pd[:, :, 1:h + 1, 1:w + 1],
+                ),
+            ],
+            dim=1,
+        )
+        return out + torch.clamp(
+            learned_bias.expand_as(out), min=0, max=self.ob_cost
+        )
+
+    def propagate_traversal(self, node_coords, close, g, coords):
+        ymin, ymax, xmin, xmax = self.safe_roi_2d(
+            node_coords[0] - 1,
+            node_coords[0] + 2,
+            node_coords[1] - 1,
+            node_coords[1] + 2,
+        )
+        mask = close[:, :, ymin:ymax, xmin:xmax] > 0
+        mask[
+            :, :, f2ind(node_coords, 0) - ymin, f2ind(node_coords, 1) - xmin
+        ] = 0
+        mask = mask > 0
+        current_g_cost = g[:, :, ymin:ymax, xmin:xmax][mask].clone()
+        if len(current_g_cost.view(-1)) == 0:
+            # we are kind surrounded by obstacles,
+            # but still need to output something
+            mask = torch.relu(
+                1.0 - self.been_there[:, :, ymin:ymax, xmin:xmax]
+            )
+            mask[
+                :,
+                :,
+                f2ind(node_coords, 0) - ymin,
+                f2ind(node_coords, 1) - xmin,
+            ] = 0
+            mask = mask > 0
+            current_g_cost = g[:, :, ymin:ymax, xmin:xmax][mask].clone()
+        if len(current_g_cost.view(-1)) > 1:
+            current_g_cost = current_g_cost - torch.min(current_g_cost).item()
+            current_g_cost = current_g_cost + 0.41 * torch.randperm(
+                len(current_g_cost),
+                dtype=torch.float32,
+                device=torch.device("cpu"),
+            ) / (len(current_g_cost))
+        #
+        coords_roi = coords[:, :, ymin:ymax, xmin:xmax]
+        out = self.argmin(
+            current_g_cost, coords_roi[mask.expand_as(coords_roi)]
+        )
+        return out
+
+    def get_clean_costmap_and_goodmask(self):
+        good_mask = 1 - F.max_pool2d(self.obstacles, 3, stride=1, padding=1)
+        costmap = self.g_map
+        obstacle_cost_corrected = 10000.0
+        sampling_map = torch.clamp(costmap, min=0, max=obstacle_cost_corrected)
+        return sampling_map, good_mask
+
+    def reconstruct_path(self):
+        out_path = []
+        goal_coords = (
+            self.goal_coords.cpu()
+        )
+        start_coords = (
+            self.start_coords.cpu()
+        )
+
+        cost = self.g_map[:, :, f2ind(goal_coords, 0), f2ind(goal_coords, 1)]
+        # Traversing
+        done = False
+        node_coords = goal_coords.cpu()
+        out_path.append(node_coords)
+        self.been_there = 0 * self.been_there.cpu()
+        self.been_there[
+            :, :, f2ind(node_coords, 0), f2ind(node_coords, 1)
+        ] = 1.0
+        self.close_list_map = self.close_list_map.cpu()
+        self.g_map = self.g_map.cpu()
+        self.coords = self.coords.cpu()
+        count1 = 0
+        while not done:
+            node_coords = self.propagate_traversal(
+                node_coords, self.close_list_map, self.g_map, self.coords
+            )
+            self.been_there[
+                :, :, f2ind(node_coords, 0), f2ind(node_coords, 1)
+            ] = 1.0
+            if torch.norm(node_coords - out_path[-1], 2).item() < 0.3:
+                y = node_coords.flatten()[0].long()
+                x = node_coords.flatten()[1].long()
+                print(self.g_map[0, 0, y - 2:y + 3, x - 2:x + 3])
+                print("loop in out_path", node_coords)
+                raise ValueError("loop in out_path")
+                return out_path, cost
+            out_path.append(node_coords)
+            done = torch.norm(node_coords - start_coords.cpu(), 2).item() < 0.3
+            count1 += 1
+            if count1 > 250:
+                break
+        return out_path, cost
diff --git a/baselines/slambased/reprojection.py b/baselines/slambased/reprojection.py
new file mode 100644
index 0000000000000000000000000000000000000000..566b47745f04e0445a59eb2d3583157988818f19
--- /dev/null
+++ b/baselines/slambased/reprojection.py
@@ -0,0 +1,289 @@
+import numpy as np
+import torch
+from math import ceil, floor
+
+
+
+def p_zx(p):
+    return p[(0, 2), 3]
+
+
+def get_map_size_in_cells(map_size_in_meters, cell_size_in_meters):
+    return int(ceil(map_size_in_meters / cell_size_in_meters)) + 1
+
+
+def get_pos_diff(p_init, p_fin):
+    return p_zx(p_fin) - p_zx(p_init)
+
+
+def get_distance(p_init, p_fin):
+    return torch.norm(get_pos_diff(p_init, p_fin))
+
+
+def get_pos_diffs(ps):
+    return ps[1:, (0, 2), 3] - ps[: (ps.size(0) - 1), (0, 2), 3]
+
+
+def angle_to_pi_2_minus_pi_2(angle):
+    if angle < -np.pi:
+        angle = 2.0 * np.pi + angle
+    if angle > np.pi:
+        angle = -2.0 * np.pi + angle
+    return angle
+
+
+def get_direction(p_init, p_fin, ang_th=0.2, pos_th=0.1):
+    pos_diff = get_pos_diff(p_init, p_fin)
+    if torch.norm(pos_diff, 2).item() < pos_th:
+        return 0
+    else:
+        needed_angle = torch.atan2(pos_diff[1], pos_diff[0])
+        current_angle = torch.atan2(p_init[2, 0], p_init[0, 0])
+    to_rotate = angle_to_pi_2_minus_pi_2(
+        -np.pi / 2.0 + needed_angle - current_angle
+    )
+    if torch.abs(to_rotate).item() < ang_th:
+        return 0
+    return to_rotate
+
+
+def reproject_local_to_global(xyz_local, p):
+    device = xyz_local.device
+    num, dim = xyz_local.size()
+    if dim == 3:
+        xyz = torch.cat(
+            [
+                xyz_local,
+                torch.ones((num, 1), dtype=torch.float32, device=device),
+            ],
+            dim=1,
+        )
+    elif dim == 4:
+        xyz = xyz_local
+    else:
+        raise ValueError(
+            "3d point cloud dim is neighter 3, or 4 (homogenious)"
+        )
+    # print(xyz.shape, P.shape)
+    xyz_global = torch.mm(p.squeeze(), xyz.t())
+    return xyz_global.t()
+
+
+def project2d_pcl_into_worldmap(zx, map_size, cell_size):
+    device = zx.device
+    shift = int(floor(get_map_size_in_cells(map_size, cell_size) / 2.0))
+    topdown2index = torch.tensor(
+        [[1.0 / cell_size, 0, shift], [0, 1.0 / cell_size, shift], [0, 0, 1]],
+        device=device,
+    )
+    world_coords_h = torch.cat(
+        [zx.view(-1, 2), torch.ones((len(zx), 1), device=device)], dim=1
+    )
+    world_coords = torch.mm(topdown2index, world_coords_h.t())
+    return world_coords.t()[:, :2]
+
+
+def get_pose2d(poses6d):
+    poses6d = poses6d.view(-1, 4, 4)
+    poses2d = poses6d[:, (0, 2)]
+    poses2d = poses2d[:, :, (0, 2, 3)]
+    return poses2d
+
+
+def get_rotation_matrix(angle_in_radians):
+    angle_in_radians = angle_in_radians.view(-1, 1, 1)
+    sin_a = torch.sin(angle_in_radians)
+    cos_a = torch.cos(angle_in_radians)
+    a1x = torch.cat([cos_a, sin_a], dim=2)
+    a2x = torch.cat([-sin_a, cos_a], dim=2)
+    transform = torch.cat([a1x, a2x], dim=1)
+    return transform
+
+
+def normalize_zx_ori(p):
+    p2d = get_pose2d(p)
+    norms = torch.norm(p2d[:, 0, :2], dim=1).view(-1, 1, 1)
+    out = torch.cat(
+        [
+            torch.cat(
+                [p[:, :3, :3] / norms.expand(p.size(0), 3, 3), p[:, 3:, :3]],
+                dim=1,
+            ),
+            p[:, :, 3:],
+        ],
+        dim=2,
+    )
+    return out
+
+
+def add_rot_wps(p):
+    planned_tps_norm = normalize_zx_ori(p)
+    pos_diffs = get_pos_diffs(planned_tps_norm)
+
+    angles = torch.atan2(pos_diffs[:, 1], pos_diffs[:, 0])
+    rotmats = get_rotation_matrix(angles)
+    planned_tps_norm[:p.size(0) - 1, 0, 0] = rotmats[:, 0, 0]
+    planned_tps_norm[:p.size(0) - 1, 0, 2] = rotmats[:, 0, 1]
+    planned_tps_norm[:p.size(0) - 1, 2, 0] = rotmats[:, 1, 0]
+    planned_tps_norm[:p.size(0) - 1, 2, 2] = rotmats[:, 1, 1]
+
+    planned_points2 = planned_tps_norm.clone()
+
+    planned_points2[1:, 0, 0] = planned_tps_norm[:p.size(0) - 1, 0, 0]
+    planned_points2[1:, 0, 2] = planned_tps_norm[:p.size(0) - 1, 0, 2]
+    planned_points2[1:, 2, 0] = planned_tps_norm[:p.size(0) - 1, 2, 0]
+    planned_points2[1:, 2, 2] = planned_tps_norm[:p.size(0) - 1, 2, 2]
+    out = torch.stack(
+        (planned_points2.unsqueeze(0), planned_tps_norm.unsqueeze(0)), dim=0
+    ).squeeze()
+    out = out.permute(1, 0, 2, 3).contiguous().view(-1, 4, 4)
+    return out
+
+
+def planned_path2tps(path, cell_size, map_size, agent_h, add_rot=False):
+    '''Path is list of 2d coordinates from planner, in map cells. 
+    tp is trajectory pose, 4x4 matrix - same format,
+    as in localization module
+    '''
+    path = torch.cat(path).view(-1, 2)
+    # print(path.size())
+    num_pts = len(path)
+    planned_tps = torch.eye(4).unsqueeze(0).repeat((num_pts, 1, 1))
+    planned_tps[:, 0, 3] = path[:, 1]  # switch back x and z
+    planned_tps[:, 1, 3] = agent_h
+    planned_tps[:, 2, 3] = path[:, 0]  # switch back x and z
+    shift = int(floor(get_map_size_in_cells(map_size, cell_size) / 2.0))
+    planned_tps[:, 0, 3] = planned_tps[:, 0, 3] - shift
+    planned_tps[:, 2, 3] = planned_tps[:, 2, 3] - shift
+    p = torch.tensor(
+        [
+            [1.0 / cell_size, 0, 0, 0],
+            [0, 1.0 / cell_size, 0, 0],
+            [0, 0, 1.0 / cell_size, 0],
+            [0, 0, 0, 1],
+        ]
+    )
+    planned_tps = torch.bmm(
+        p.inverse().unsqueeze(0).expand(num_pts, 4, 4), planned_tps
+    )
+    if add_rot:
+        return add_rot_wps(planned_tps)
+    return planned_tps
+
+
+def habitat_goalpos_to_tp(ro_phi, p_curr):
+    '''Convert distance and azimuth to 
+    trajectory pose, 4x4 matrix - same format,
+    as in localization module
+    '''
+    device = ro_phi.device
+    offset = torch.tensor(
+        [
+            -ro_phi[0] * torch.sin(ro_phi[1]),
+            0,
+            ro_phi[0] * torch.cos(ro_phi[1]),
+        ]
+    ).to(device)
+    if p_curr.size(1) == 3:
+        p_curr = homogenize_p(p_curr)
+    goal_tp = torch.mm(
+        p_curr.to(device),
+        torch.cat(
+            [
+                offset
+                * torch.tensor(
+                    [1.0, 1.0, 1.0], dtype=torch.float32, device=device
+                ),
+                torch.tensor([1.0], device=device),
+            ]
+        ).reshape(4, 1),
+    )
+    return goal_tp
+
+
+def habitat_goalpos_to_mapgoal_pos(offset, p_curr, cell_size, map_size):
+    '''Convert distance and azimuth to 
+    map cell coordinates
+    '''
+    device = offset.device
+    goal_tp = habitat_goalpos_to_tp(offset, p_curr)
+    goal_tp1 = torch.eye(4).to(device)
+    goal_tp1[:, 3:] = goal_tp
+    projected_p = project_tps_into_worldmap(
+        goal_tp1.view(1, 4, 4), cell_size, map_size
+    )
+    return projected_p
+
+
+
+def homogenize_p(tps):
+    device = tps.device
+    tps = tps.view(-1, 3, 4)
+    return torch.cat(
+        [
+            tps.float(),
+            torch.tensor([0, 0, 0, 1.0])
+            .view(1, 1, 4)
+            .expand(tps.size(0), 1, 4)
+            .to(device),
+        ],
+        dim=1,
+    )
+
+
+def project_tps_into_worldmap(tps, cell_size, map_size, do_floor=True):
+    '''Convert 4x4 pose matrices (trajectory poses) to 
+    map cell coordinates
+    '''
+    if len(tps) == 0:
+        return []
+    if isinstance(tps, list):
+        return []
+    device = tps.device
+    topdown_p = torch.tensor([[1.0, 0, 0, 0], [0, 0, 1.0, 0]]).to(device)
+    world_coords = torch.bmm(
+        topdown_p.view(1, 2, 4).expand(tps.size(0), 2, 4),
+        tps[:, :, 3:].view(-1, 4, 1),
+    )
+    shift = int(floor(get_map_size_in_cells(map_size, cell_size) / 2.0))
+    topdown2index = torch.tensor(
+        [[1.0 / cell_size, 0, shift], [0, 1.0 / cell_size, shift], [0, 0, 1]]
+    ).to(device)
+    world_coords_h = torch.cat(
+        [world_coords, torch.ones((len(world_coords), 1, 1)).to(device)], dim=1
+    )
+    world_coords = torch.bmm(
+        topdown2index.unsqueeze(0).expand(world_coords_h.size(0), 3, 3),
+        world_coords_h,
+    )[:, :2, 0]
+    if do_floor:
+        return (
+            torch.floor(world_coords.flip(1)) + 1
+        )  # for having revesrve (z,x) ordering
+    return world_coords.flip(1)
+
+
+def project_tps_into_worldmap_numpy(tps, slam_to_world, cell_size, map_size):
+    if len(tps) == 0:
+        return []
+    if isinstance(tps, list):
+        return []
+    # tps is expected in [n,4,4] format
+    topdown_p = np.array([[slam_to_world, 0, 0, 0], [0, 0, slam_to_world, 0]])
+    try:
+        world_coords = np.matmul(
+            topdown_p.reshape(1, 2, 4), tps[:, :, 3:].reshape(-1, 4, 1)
+        )
+    except BaseException:
+        return []
+    shift = int(floor(get_map_size_in_cells(map_size, cell_size) / 2.0))
+    topdown2index = np.array(
+        [[1.0 / cell_size, 0, shift], [0, 1.0 / cell_size, shift], [0, 0, 1]]
+    )
+    world_coords_h = np.concatenate(
+        [world_coords, np.ones((len(world_coords), 1, 1))], axis=1
+    )
+    world_coords = np.matmul(topdown2index, world_coords_h)[:, :2, 0]
+    return (
+        world_coords[:, ::-1].astype(np.int32) + 1
+    )  # for having revesrve (z,x) ordering
diff --git a/baselines/slambased/utils.py b/baselines/slambased/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b39671c7b38c4cc84e9f65a855c48cd283b2ed8
--- /dev/null
+++ b/baselines/slambased/utils.py
@@ -0,0 +1,43 @@
+import numpy as np
+import torch
+import time
+from PIL import Image
+
+
+def generate_2dgrid(h, w, centered=False):
+    if centered:
+        x = torch.linspace(-w / 2 + 1, w / 2, w)
+        y = torch.linspace(-h / 2 + 1, h / 2, h)
+    else:
+        x = torch.linspace(0, w - 1, w)
+        y = torch.linspace(0, h - 1, h)
+    grid2d = torch.stack(
+        [y.repeat(w, 1).t().contiguous().view(-1), x.repeat(h)], 1
+    )
+    return grid2d.view(1, h, w, 2).permute(0, 3, 1, 2)
+
+
+def str2bool(v):
+    if v.lower() in ("yes", "true", "t", "y", "1"):
+        return True
+    elif v.lower() in ("no", "false", "f", "n", "0"):
+        return False
+
+
+def resize_pil(np_img, size=128):
+    im1 = Image.fromarray(np_img)
+    im1.thumbnail((size, size))
+    return np.array(im1)
+
+
+def find_map_size(h, w):
+    map_size_in_meters = int(0.1 * 3 * max(h, w))
+    if map_size_in_meters % 10 != 0:
+        map_size_in_meters = map_size_in_meters + (
+            10 - (map_size_in_meters % 10)
+        )
+    return map_size_in_meters
+
+
+def gettimestr():
+    return time.strftime("%Y-%m-%d--%H_%M_%S", time.gmtime())
diff --git a/configs/tasks/pointnav_rgbd.yaml b/configs/tasks/pointnav_rgbd.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9635a93b002a5af3e0b8205663f5b1614ba6dbb9
--- /dev/null
+++ b/configs/tasks/pointnav_rgbd.yaml
@@ -0,0 +1,24 @@
+ENVIRONMENT:
+  MAX_EPISODE_STEPS: 500
+SIMULATOR:
+  AGENT_0:
+    SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
+  HABITAT_SIM_V0:
+    GPU_DEVICE_ID: 0
+  RGB_SENSOR:
+    WIDTH: 256
+    HEIGHT: 256
+  DEPTH_SENSOR:
+    WIDTH: 256
+    HEIGHT: 256
+TASK:
+  TYPE: Nav-v0
+  SUCCESS_DISTANCE: 0.2
+  SENSORS: ['POINTGOAL_SENSOR']
+  POINTGOAL_SENSOR:
+    TYPE: PointGoalSensor
+    GOAL_FORMAT: POLAR
+  MEASUREMENTS: ['SPL']
+  SPL:
+    TYPE: SPL
+    SUCCESS_DISTANCE: 0.2