{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "UxqB7_Ieur0s" }, "source": [ "[](https://colab.research.google.com/github/aurelio-labs/semantic-router/blob/main/docs/02-dynamic-routes.ipynb) [](https://nbviewer.org/github/aurelio-labs/semantic-router/blob/main/docs/02-dynamic-routes.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "id": "EduhQaNAur0u" }, "source": [ "# Dynamic Routes" ] }, { "cell_type": "markdown", "metadata": { "id": "_4JgNeX4ur0v" }, "source": [ "In semantic-router there are two types of routes that can be chosen. Both routes belong to the `Route` object, the only difference between them is that _static_ routes return a `Route.name` when chosen, whereas _dynamic_ routes use an LLM call to produce parameter input values.\n", "\n", "For example, a _static_ route will tell us if a query is talking about mathematics by returning the route name (which could be `\"math\"` for example). A _dynamic_ route does the same thing, but it also extracts key information from the input utterance to be used in a function associated with that route. \n", "\n", "For example we could provide a dynamic route with associated utterances: \n", "\n", "```\n", "\"what is x to the power of y?\"\n", "\"what is 9 to the power of 4?\"\n", "\"calculate the result of base x and exponent y\"\n", "\"calculate the result of base 10 and exponent 3\"\n", "\"return x to the power of y\"\n", "```\n", "\n", "and we could also provide the route with a schema outlining key features of the function:\n", "\n", "```\n", "def power(base: float, exponent: float) -> float:\n", " \"\"\"Raise base to the power of exponent.\n", "\n", " Args:\n", " base (float): The base number.\n", " exponent (float): The exponent to which the base is raised.\n", "\n", " Returns:\n", " float: The result of base raised to the power of exponent.\n", " \"\"\"\n", " return base ** exponent\n", "```\n", "\n", "Then, if the users input utterance is \"What is 2 to the power of 3?\", the route will be triggered, as the input utterance is semantically similar to the route utterances. Furthermore, the route utilizes an LLM to identify that `base=2` and `expoenent=3`. These values are returned in such a way that they can be used in the above `power` function. That is, the dynamic router automates the process of calling relevant functions from natural language inputs. \n", "\n", "***⚠️ Note: We have a fully local version of dynamic routes available at [docs/05-local-execution.ipynb](https://github.com/aurelio-labs/semantic-router/blob/main/docs/05-local-execution.ipynb). The local 05 version tends to outperform the OpenAI version we demo in this notebook, so we'd recommend trying [05](https://github.com/aurelio-labs/semantic-router/blob/main/docs/05-local-execution.ipynb)!***" ] }, { "cell_type": "markdown", "metadata": { "id": "bbmw8CO4ur0v" }, "source": [ "## Installing the Library" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "dLElfRhgur0v" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tzdata in c:\\users\\siraj\\documents\\personal\\work\\aurelio\\virtual environments\\semantic_router_3\\lib\\site-packages (2024.1)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "[notice] A new release of pip is available: 23.1.2 -> 24.0\n", "[notice] To update, run: python.exe -m pip install --upgrade pip\n", "\n", "[notice] A new release of pip is available: 23.1.2 -> 24.0\n", "[notice] To update, run: python.exe -m pip install --upgrade pip\n" ] } ], "source": [ "!pip install tzdata\n", "!pip install -qU semantic-router" ] }, { "cell_type": "markdown", "metadata": { "id": "BixZd6Eour0w" }, "source": [ "## Initializing Routes and RouteLayer" ] }, { "cell_type": "markdown", "metadata": { "id": "PxnW9qBvur0x" }, "source": [ "Dynamic routes are treated in the same way as static routes, let's begin by initializing a `RouteLayer` consisting of static routes." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "kc9Ty6Lgur0x" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Siraj\\Documents\\Personal\\Work\\Aurelio\\Virtual Environments\\semantic_router_3\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "from semantic_router import Route\n", "\n", "politics = Route(\n", " name=\"politics\",\n", " utterances=[\n", " \"isn't politics the best thing ever\",\n", " \"why don't you tell me about your political opinions\",\n", " \"don't you just love the president\" \"don't you just hate the president\",\n", " \"they're going to destroy this country!\",\n", " \"they will save the country!\",\n", " ],\n", ")\n", "chitchat = Route(\n", " name=\"chitchat\",\n", " utterances=[\n", " \"how's the weather today?\",\n", " \"how are things going?\",\n", " \"lovely weather today\",\n", " \"the weather is horrendous\",\n", " \"let's go to the chippy\",\n", " ],\n", ")\n", "\n", "routes = [politics, chitchat]" ] }, { "cell_type": "markdown", "metadata": { "id": "voWyqmffur0x" }, "source": [ "We initialize our `RouteLayer` with our `encoder` and `routes`. We can use popular encoder APIs like `CohereEncoder` and `OpenAIEncoder`, or local alternatives like `FastEmbedEncoder`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BI9AiDspur0y", "outputId": "27329a54-3f16-44a5-ac20-13a6b26afb97" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger local\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 1 length: 34\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 1 trunc length: 34\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 2 length: 51\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 2 trunc length: 51\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 3 length: 66\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 3 trunc length: 66\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 4 length: 38\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 4 trunc length: 38\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 5 length: 27\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 5 trunc length: 27\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 6 length: 24\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 6 trunc length: 24\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 7 length: 21\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 7 trunc length: 21\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 8 length: 20\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 8 trunc length: 20\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 9 length: 25\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 9 trunc length: 25\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 10 length: 22\u001b[0m\n", "\u001b[32m2024-05-01 01:25:54 INFO semantic_router.utils.logger Document 10 trunc length: 22\u001b[0m\n" ] } ], "source": [ "import os\n", "from getpass import getpass\n", "from semantic_router import RouteLayer\n", "from semantic_router.encoders import CohereEncoder, OpenAIEncoder\n", "\n", "# dashboard.cohere.ai\n", "# os.environ[\"COHERE_API_KEY\"] = os.getenv(\"COHERE_API_KEY\") or getpass(\n", "# \"Enter Cohere API Key: \"\n", "# )\n", "# platform.openai.com\n", "os.environ[\"OPENAI_API_KEY\"] = os.getenv(\"OPENAI_API_KEY\") or getpass(\n", " \"Enter OpenAI API Key: \"\n", ")\n", "\n", "# encoder = CohereEncoder()\n", "encoder = OpenAIEncoder()\n", "\n", "rl = RouteLayer(encoder=encoder, routes=routes)" ] }, { "cell_type": "markdown", "metadata": { "id": "GuLCeIS5ur0y" }, "source": [ "We run the solely static routes layer:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_rNREh7gur0y", "outputId": "f3a1dc0b-d760-4efb-b634-d3547011dcb7" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2024-05-01 01:25:55 INFO semantic_router.utils.logger Document 1 length: 24\u001b[0m\n", "\u001b[32m2024-05-01 01:25:55 INFO semantic_router.utils.logger Document 1 trunc length: 24\u001b[0m\n" ] }, { "data": { "text/plain": [ "RouteChoice(name='chitchat', function_call=None, similarity_score=None)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rl(\"how's the weather today?\")" ] }, { "cell_type": "markdown", "metadata": { "id": "McbLKO26ur0y" }, "source": [ "## Creating a Dynamic Route" ] }, { "cell_type": "markdown", "metadata": { "id": "ANAoEjxYur0y" }, "source": [ "As with static routes, we must create a dynamic route before adding it to our route layer. To make a route dynamic, we need to provide the `function_schemas` as a list. Each function schema provides instructions on what a function is, so that an LLM can decide how to use it correctly." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "5jaF1Xa5ur0y" }, "outputs": [], "source": [ "from datetime import datetime\n", "from zoneinfo import ZoneInfo\n", "\n", "\n", "def get_time(timezone: str) -> str:\n", " \"\"\"Finds the current time in a specific timezone.\n", "\n", " :param timezone: The timezone to find the current time in, should\n", " be a valid timezone from the IANA Time Zone Database like\n", " \"America/New_York\" or \"Europe/London\". Do NOT put the place\n", " name itself like \"rome\", or \"new york\", you must provide\n", " the IANA format.\n", " :type timezone: str\n", " :return: The current time in the specified timezone.\"\"\"\n", " now = datetime.now(ZoneInfo(timezone))\n", " return now.strftime(\"%H:%M\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 35 }, "id": "YyFKV8jMur0z", "outputId": "29cf80f4-552c-47bb-fbf9-019f5dfdf00a" }, "outputs": [ { "data": { "text/plain": [ "'17:25'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_time(\"America/New_York\")" ] }, { "cell_type": "markdown", "metadata": { "id": "4qyaRuNXur0z" }, "source": [ "To get the function schema we can use the `get_schema` function from the `function_call` module." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "tOjuhp5Xur0z", "outputId": "ca88a3ea-d70a-4950-be9a-63fab699de3b" }, "outputs": [ { "data": { "text/plain": [ "[{'type': 'function',\n", " 'function': {'name': 'get_time',\n", " 'description': 'Finds the current time in a specific timezone.\\n\\n:param timezone: The timezone to find the current time in, should\\n be a valid timezone from the IANA Time Zone Database like\\n \"America/New_York\" or \"Europe/London\". Do NOT put the place\\n name itself like \"rome\", or \"new york\", you must provide\\n the IANA format.\\n:type timezone: str\\n:return: The current time in the specified timezone.',\n", " 'parameters': {'type': 'object',\n", " 'properties': {'timezone': {'type': 'string',\n", " 'description': 'The timezone to find the current time in, should\\n be a valid timezone from the IANA Time Zone Database like\\n \"America/New_York\" or \"Europe/London\". Do NOT put the place\\n name itself like \"rome\", or \"new york\", you must provide\\n the IANA format.'}},\n", " 'required': ['timezone']}}}]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from semantic_router.utils.function_call import get_schemas_openai\n", "\n", "schema = get_schemas_openai([get_time])\n", "schema" ] }, { "cell_type": "markdown", "metadata": { "id": "HcF7jGjAur0z" }, "source": [ "We use this to define our dynamic route:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "iesBG9P3ur0z" }, "outputs": [], "source": [ "time_route = Route(\n", " name=\"get_time\",\n", " utterances=[\n", " \"what is the time in new york city?\",\n", " \"what is the time in london?\",\n", " \"I live in Rome, what time is it?\",\n", " ],\n", " function_schemas=schema,\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "time_route.llm" ] }, { "cell_type": "markdown", "metadata": { "id": "ZiUs3ovpur0z" }, "source": [ "Add the new route to our `layer`:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-0vY8PRXur0z", "outputId": "db01e14c-eab3-4f93-f4c2-e30f508c8b5d" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Adding `get_time` route\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 1 length: 34\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 1 trunc length: 34\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 2 length: 27\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 2 trunc length: 27\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 3 length: 32\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 3 trunc length: 32\u001b[0m\n" ] } ], "source": [ "rl.add(time_route)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "time_route.llm" ] }, { "cell_type": "markdown", "metadata": { "id": "7yoE0IrNur0z" }, "source": [ "Now we can ask our layer a time related question to trigger our new dynamic route." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 53 }, "id": "Wfb68M0-ur0z", "outputId": "79923883-2a4d-4744-f8ce-e818cb5f14c3" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 1 length: 34\u001b[0m\n", "\u001b[32m2024-05-01 01:25:56 INFO semantic_router.utils.logger Document 1 trunc length: 34\u001b[0m\n", "\u001b[33m2024-05-01 01:25:57 WARNING semantic_router.utils.logger No LLM provided for dynamic route, will use OpenAI LLM default. Ensure API key is set in OPENAI_API_KEY environment variable.\u001b[0m\n" ] }, { "data": { "text/plain": [ "RouteChoice(name='get_time', function_call=[{'function_name': 'get_time', 'arguments': '{\"timezone\":\"America/New_York\"}'}], similarity_score=None)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "out = rl(\"what is the time in new york city?\")\n", "out\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[{'function_name': 'get_time', 'arguments': '{\"timezone\":\"America/New_York\"}'}]\n" ] } ], "source": [ "print(out.function_call)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "17:25\n" ] } ], "source": [ "import json\n", "\n", "for call in out.function_call:\n", " if call['function_name'] == 'get_time':\n", " args = json.loads(call['arguments'])\n", " result = get_time(**args)\n", "print(result)" ] }, { "cell_type": "markdown", "metadata": { "id": "Qt0vkq2Xur00" }, "source": [ "Our dynamic route provides both the route itself _and_ the input parameters required to use the route." ] }, { "cell_type": "markdown", "metadata": { "id": "J0oD1dxIur00" }, "source": [ "---" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "decision-layer", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 0 }