{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Semantic Router: Hybrid Layer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The Hybrid Layer in the Semantic Router library can improve  making performance particularly for niche use-cases that contain specific terminology, such as finance or medical. It helps us provide more importance to  making based on the keywords contained in our utterances and user queries."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Getting Started"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We start by installing the library:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -qU semantic-router==0.0.6"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We start by defining a dictionary mapping s to example phrases that should trigger those s."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'Route' from 'semantic_router.schema' (/Users/jakit/customers/aurelio/semantic-router/.venv/lib/python3.11/site-packages/semantic_router/schema.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "\u001b[1;32m/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb Cell 7\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39msemantic_router\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mschema\u001b[39;00m \u001b[39mimport\u001b[39;00m Route\n\u001b[1;32m      <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m politics \u001b[39m=\u001b[39m Route(\n\u001b[1;32m      <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m     name\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mpolitics\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m     utterances\u001b[39m=\u001b[39m[\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=11'>12</a>\u001b[0m     ],\n\u001b[1;32m     <a href='vscode-notebook-cell:/Users/jakit/customers/aurelio/semantic-router/docs/examples/hybrid-layer.ipynb#X10sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m )\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'Route' from 'semantic_router.schema' (/Users/jakit/customers/aurelio/semantic-router/.venv/lib/python3.11/site-packages/semantic_router/schema.py)"
     ]
    }
   ],
   "source": [
    "from semantic_router.schema import Route\n",
    "\n",
    "politics = Route(\n",
    "    name=\"politics\",\n",
    "    utterances=[\n",
    "        \"isn't politics the best thing ever\",\n",
    "        \"why don't you tell me about your political opinions\",\n",
    "        \"don't you just love the president\",\n",
    "        \"don't you just hate the president\",\n",
    "        \"they're going to destroy this country!\",\n",
    "        \"they will save the country!\",\n",
    "    ],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's define another for good measure:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "chitchat = Route(\n",
    "    name=\"chitchat\",\n",
    "    utterances=[\n",
    "        \"how's the weather today?\",\n",
    "        \"how are things going?\",\n",
    "        \"lovely weather today\",\n",
    "        \"the weather is horrendous\",\n",
    "        \"let's go to the chippy\",\n",
    "    ],\n",
    ")\n",
    "\n",
    "chitchat = Route(\n",
    "    name=\"chitchat\",\n",
    "    utterances=[\n",
    "        \"how's the weather today?\",\n",
    "        \"how are things going?\",\n",
    "        \"lovely weather today\",\n",
    "        \"the weather is horrendous\",\n",
    "        \"let's go to the chippy\",\n",
    "    ],\n",
    ")\n",
    "\n",
    "routes = [politics, chitchat]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we initialize our embedding model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from semantic_router.encoders import CohereEncoder\n",
    "from getpass import getpass\n",
    "\n",
    "os.environ[\"COHERE_API_KEY\"] = os.environ[\"COHERE_API_KEY\"] or getpass(\n",
    "    \"Enter Cohere API Key: \"\n",
    ")\n",
    "\n",
    "encoder = CohereEncoder()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we define the `RouteLayer`. When called, the route layer will consume text (a query) and output the category (`Route`) it belongs to — to initialize a `RouteLayer` we need our `encoder` model and a list of `routes`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semantic_router.hybrid_layer import HybridRouteLayer\n",
    "\n",
    "dl = HybridRouteLayer(encoder=encoder, routes=routes)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dl(\"don't you love politics?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dl(\"how's the weather today?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "decision-layer",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}