{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "[](https://colab.research.google.com/github/aurelio-labs/semantic-router/blob/main/docs/encoders/openai-embed-3.ipynb) [](https://nbviewer.org/github/aurelio-labs/semantic-router/blob/main/docs/encoders/openai-embed-3.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Using OpenAI Embed 3 Models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The 3rd generation embedding models from OpenAI (`text-embedding-3-small` and `text-embedding-3-large`) can both be used with our `OpenAIEncoder` and usage is primarily the same as with the 2nd generation `text-embedding-ada-002`. However, there is a new `dimensions` parameter — which we will discuss below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Getting Started" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by installing semantic-router. Support for the new `dimensions` parameter was added in `semantic-router==0.0.19` and `openai==1.10.0`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install -qU semantic-router==0.0.20" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by defining a dictionary mapping routes to example phrases that should trigger those routes." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/jamesbriggs/opt/anaconda3/envs/decision-layer/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "from semantic_router import Route\n", "\n", "politics = Route(\n", " name=\"politics\",\n", " utterances=[\n", " \"isn't politics the best thing ever\",\n", " \"why don't you tell me about your political opinions\",\n", " \"don't you just love the president\",\n", " \"don't you just hate the president\",\n", " \"they're going to destroy this country!\",\n", " \"they will save the country!\",\n", " ],\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define another for good measure:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "chitchat = Route(\n", " name=\"chitchat\",\n", " utterances=[\n", " \"how's the weather today?\",\n", " \"how are things going?\",\n", " \"lovely weather today\",\n", " \"the weather is horrendous\",\n", " \"let's go to the chippy\",\n", " ],\n", ")\n", "\n", "routes = [politics, chitchat]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we initialize our embedding model, we will use the `-3-large` model alongside a `dimensions` value of `256`. This will produce _tiny_ 256-dimensional vectors that — according to OpenAI — outperform the 1536-dimensional vectors produced by `text-embedding-ada-002`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import os\n", "from getpass import getpass\n", "from semantic_router.encoders import OpenAIEncoder\n", "\n", "os.environ[\"OPENAI_API_KEY\"] = os.getenv(\"OPENAI_API_KEY\") or getpass(\n", " \"Enter OpenAI API Key: \"\n", ")\n", "\n", "encoder = OpenAIEncoder(\n", " name=\"text-embedding-3-large\", score_threshold=0.5, dimensions=256\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we define the `RouteLayer`. When called, the route layer will consume text (a query) and output the category (`Route`) it belongs to — to initialize a `RouteLayer` we need our `encoder` model and a list of `routes`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2024-01-28 12:40:08 INFO semantic_router.utils.logger Initializing RouteLayer\u001b[0m\n" ] } ], "source": [ "from semantic_router.layer import RouteLayer\n", "\n", "rl = RouteLayer(encoder=encoder, routes=routes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check the dimensionality of our vectors by looking at the `index` attribute of the `RouteLayer`." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(11, 256)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rl.index.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We do have 256-dimensional vectors. Now let's test them:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RouteChoice(name='politics', function_call=None, similarity_score=None, trigger=None)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rl(\"don't you love politics?\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RouteChoice(name='chitchat', function_call=None, similarity_score=None, trigger=None)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rl(\"how's the weather today?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both are classified accurately, what if we send a query that is unrelated to our existing `Route` objects?" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RouteChoice(name=None, function_call=None, similarity_score=None, trigger=None)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rl(\"I'm interested in learning about llama 2\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case, we return `None` because no matches were identified. We always recommend optimizing your `RouteLayer` for optimal performance, you can see how in [this notebook](https://github.com/aurelio-labs/semantic-router/blob/main/docs/06-threshold-optimization.ipynb)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] } ], "metadata": { "kernelspec": { "display_name": "decision-layer", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }