import os from typing import List, Optional import openai from semantic_router.llms import BaseLLM from semantic_router.schema import Message from semantic_router.utils.logger import logger class AzureOpenAILLM(BaseLLM): client: Optional[openai.AzureOpenAI] temperature: Optional[float] max_tokens: Optional[int] def __init__( self, name: Optional[str] = None, openai_api_key: Optional[str] = None, azure_endpoint: Optional[str] = None, temperature: float = 0.01, max_tokens: int = 200, api_version="2023-07-01-preview", ): if name is None: name = os.getenv("OPENAI_CHAT_MODEL_NAME", "gpt-35-turbo") super().__init__(name=name) api_key = openai_api_key or os.getenv("AZURE_OPENAI_API_KEY") if api_key is None: raise ValueError("OpenAI API key cannot be 'None'.") azure_endpoint = azure_endpoint or os.getenv("AZURE_OPENAI_ENDPOINT") if azure_endpoint is None: raise ValueError("Azure endpoint API key cannot be 'None'.") try: self.client = openai.AzureOpenAI( api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version ) except Exception as e: raise ValueError(f"OpenAI API client failed to initialize. Error: {e}") self.temperature = temperature self.max_tokens = max_tokens def __call__(self, messages: List[Message]) -> str: if self.client is None: raise ValueError("OpenAI client is not initialized.") try: completion = self.client.chat.completions.create( model=self.name, messages=[m.to_openai() for m in messages], temperature=self.temperature, max_tokens=self.max_tokens, ) output = completion.choices[0].message.content if not output: raise Exception("No output generated") return output except Exception as e: logger.error(f"LLM error: {e}") raise Exception(f"LLM error: {e}")