import json import re from typing import Any, Callable, Dict, List, Optional, Union from pydantic.v1 import BaseModel from semantic_router.llms import BaseLLM from semantic_router.schema import Message, RouteChoice from semantic_router.utils import function_call from semantic_router.utils.logger import logger from semantic_router.llms import OpenAILLM try: from PIL.Image import Image except ImportError: pass def is_valid(route_config: str) -> bool: try: output_json = json.loads(route_config) required_keys = ["name", "utterances"] if isinstance(output_json, list): for item in output_json: missing_keys = [key for key in required_keys if key not in item] if missing_keys: logger.warning( f"Missing keys in route config: {', '.join(missing_keys)}" ) return False return True else: missing_keys = [key for key in required_keys if key not in output_json] if missing_keys: logger.warning( f"Missing keys in route config: {', '.join(missing_keys)}" ) return False else: return True except json.JSONDecodeError as e: logger.error(e) return False class Route(BaseModel): name: str utterances: Union[List[str], List[Union[Any, "Image"]]] description: Optional[str] = None function_schema: Optional[Dict[str, Any]] = None openai_function_schema: Optional[Dict[str, Any]] = None llm: Optional[BaseLLM] = None score_threshold: Optional[float] = None class Config: arbitrary_types_allowed = True def __call__(self, query: Optional[str] = None) -> RouteChoice: if self.function_schema and self.openai_function_schema: raise ValueError( "Both function_schema and openai_function_schema cannot be provided. Please provide only one." ) if self.function_schema or self.openai_function_schema: if not self.llm: raise ValueError( "LLM is required for dynamic routes. Please ensure the `llm` " "attribute is set." ) elif query is None: raise ValueError( "Query is required for dynamic routes. Please ensure the `query` " "argument is passed." ) if self.function_schema: extracted_inputs = self.llm.extract_function_inputs( query=query, function_schema=self.function_schema ) func_call = extracted_inputs elif self.openai_function_schema: if not isinstance(self.llm, OpenAILLM): raise TypeError("LLM must be an instance of OpenAILLM for openai_function_schema.") extracted_inputs = self.llm.extract_function_inputs_openai( query=query, function_schema=self.openai_function_schema ) func_call = extracted_inputs else: # otherwise we just pass None for the call func_call = None return RouteChoice(name=self.name, function_call=func_call) # def to_dict(self) -> Dict[str, Any]: # return self.dict() def to_dict(self) -> Dict[str, Any]: data = self.dict() if self.llm is not None: data["llm"] = { "module": self.llm.__module__, "class": self.llm.__class__.__name__, "model": self.llm.name, } return data @classmethod def from_dict(cls, data: Dict[str, Any]): return cls(**data) @classmethod def from_dynamic_route(cls, llm: BaseLLM, entity: Union[BaseModel, Callable]): """ Generate a dynamic Route object from a function or Pydantic model using LLM """ schema = function_call.get_schema(item=entity) dynamic_route = cls._generate_dynamic_route(llm=llm, function_schema=schema) dynamic_route.function_schema = schema return dynamic_route @classmethod def _parse_route_config(cls, config: str) -> str: # Regular expression to match content inside <config></config> config_pattern = r"<config>(.*?)</config>" match = re.search(config_pattern, config, re.DOTALL) if match: config_content = match.group(1).strip() # Get the matched content return config_content else: raise ValueError("No <config></config> tags found in the output.") @classmethod def _generate_dynamic_route(cls, llm: BaseLLM, function_schema: Dict[str, Any]): logger.info("Generating dynamic route...") prompt = f""" You are tasked to generate a JSON configuration based on the provided function schema. Please follow the template below, no other tokens allowed: <config> {{ "name": "<function_name>", "utterances": [ "<example_utterance_1>", "<example_utterance_2>", "<example_utterance_3>", "<example_utterance_4>", "<example_utterance_5>"] }} </config> Only include the "name" and "utterances" keys in your answer. The "name" should match the function name and the "utterances" should comprise a list of 5 example phrases that could be used to invoke the function. Use real values instead of placeholders. Input schema: {function_schema} """ llm_input = [Message(role="user", content=prompt)] output = llm(llm_input) if not output: raise Exception("No output generated for dynamic route") route_config = cls._parse_route_config(config=output) logger.info(f"Generated route config:\n{route_config}") if is_valid(route_config): route_config_dict = json.loads(route_config) route_config_dict["llm"] = llm return Route.from_dict(route_config_dict) raise Exception("No config generated")