import os from typing import Any, List, Optional import openai from semantic_router.llms import BaseLLM from semantic_router.schema import Message from semantic_router.utils.defaults import EncoderDefault from semantic_router.utils.logger import logger import json class OpenAILLM(BaseLLM): client: Optional[openai.OpenAI] temperature: Optional[float] max_tokens: Optional[int] def __init__( self, name: Optional[str] = None, openai_api_key: Optional[str] = None, temperature: float = 0.01, max_tokens: int = 200, ): if name is None: name = EncoderDefault.OPENAI.value["language_model"] super().__init__(name=name) api_key = openai_api_key or os.getenv("OPENAI_API_KEY") if api_key is None: raise ValueError("OpenAI API key cannot be 'None'.") try: self.client = openai.OpenAI(api_key=api_key) except Exception as e: raise ValueError( f"OpenAI API client failed to initialize. Error: {e}" ) from e self.temperature = temperature self.max_tokens = max_tokens def __call__(self, messages: List[Message], function_schema: dict = None) -> str: if self.client is None: raise ValueError("OpenAI client is not initialized.") try: if function_schema: tools = [function_schema] else: tools = None completion = self.client.chat.completions.create( model=self.name, messages=[m.to_openai() for m in messages], temperature=self.temperature, max_tokens=self.max_tokens, tools=tools, ) output = completion.choices[0].message.content if function_schema: return completion.choices[0].message.tool_calls # tool_calls = completion.choices[0].message.tool_calls # if not tool_calls: # raise Exception("No tool calls available in the completion response.") # tool_call = tool_calls[0] # arguments_json = tool_call.function.arguments # arguments_dict = json.loads(arguments_json) # return arguments_dict if not output: raise Exception("No output generated") return output except Exception as e: logger.error(f"LLM error: {e}") raise Exception(f"LLM error: {e}") from e # def extract_function_inputs_openai(self, query: str, function_schema: dict) -> dict: messages = [] system_prompt = "You are an intelligent AI. Given a command or request from the user, call the function to complete the request." messages.append(Message(role="system", content=system_prompt)) messages.append(Message(role="user", content=query)) output = self(messages=messages, function_schema=function_schema) if not output: raise Exception("No output generated for extract function input") if len(output) != 1: raise ValueError("Invalid output, expected a single tool to be called") tool_call = output[0] arguments_json = tool_call.function.arguments function_inputs = json.loads(arguments_json) return function_inputs