diff --git a/semantic_router/encoders/tfidf.py b/semantic_router/encoders/tfidf.py
index fe285e5ce9bd9db85f31c3899b89b02a69699f84..656ee117e54b60a293c0b425452065258bb5db96 100644
--- a/semantic_router/encoders/tfidf.py
+++ b/semantic_router/encoders/tfidf.py
@@ -53,13 +53,11 @@ class TfidfEncoder(SparseEncoder):
             raise TypeError("`routes` parameter must be a list of Route objects.")
 
     def _build_word_index(self, docs: List[str]) -> Dict:
-        print(docs)
         words = set()
         for doc in docs:
             for word in doc.split():
                 words.add(word)
         word_index = {word: i for i, word in enumerate(words)}
-        print(word_index)
         return word_index
 
     def _compute_tf(self, docs: List[str]) -> np.ndarray:
diff --git a/semantic_router/routers/hybrid.py b/semantic_router/routers/hybrid.py
index e603add396ef602beaf3ea673d3875d619840471..36ccd8f94c5e4aa1360462a34ad10382f0c92171 100644
--- a/semantic_router/routers/hybrid.py
+++ b/semantic_router/routers/hybrid.py
@@ -37,13 +37,10 @@ class HybridRouter(BaseRouter):
         auto_sync: Optional[str] = None,
         alpha: float = 0.3,
     ):
-        print("...2.1")
         if index is None:
             logger.warning("No index provided. Using default HybridLocalIndex.")
             index = HybridLocalIndex()
-        print("...2.2")
         encoder = self._get_encoder(encoder=encoder)
-        print("...2.3")
         super().__init__(
             encoder=encoder,
             llm=llm,
@@ -53,22 +50,17 @@ class HybridRouter(BaseRouter):
             aggregation=aggregation,
             auto_sync=auto_sync,
         )
-        print("...0")
         # initialize sparse encoder
         self.sparse_encoder = self._get_sparse_encoder(sparse_encoder=sparse_encoder)
-        print("...5")
         # set alpha
         self.alpha = alpha
-        print("...6")
         # fit sparse encoder if needed
         if (
             isinstance(self.sparse_encoder, TfidfEncoder)
             and hasattr(self.sparse_encoder, "fit")
             and self.routes
         ):
-            print("...3")
             self.sparse_encoder.fit(self.routes)
-            print("...4")
         # run initialize index now if auto sync is active
         if self.auto_sync:
             self._init_index_state()
@@ -94,7 +86,6 @@ class HybridRouter(BaseRouter):
         # TODO: to merge, self._encode should probably output a special
         # TODO Embedding type that can be either dense or hybrid
         dense_emb, sparse_emb = self._encode(all_utterances)
-        print(f"{sparse_emb=}")
         self.index.add(
             embeddings=dense_emb.tolist(),
             routes=route_names,
@@ -180,8 +171,6 @@ class HybridRouter(BaseRouter):
         xq_s = self.sparse_encoder(text)
         # xq_s = np.squeeze(xq_s)
         # convex scaling
-        print(f"{self.sparse_encoder.__class__.__name__=}")
-        print(f"_encode: {xq_d.shape=}, {xq_s=}")
         xq_d, xq_s = self._convex_scaling(dense=xq_d, sparse=xq_s)
         return xq_d, xq_s
 
@@ -202,7 +191,6 @@ class HybridRouter(BaseRouter):
         # create dense query vector
         xq_d = np.array(dense_vec)
         # convex scaling
-        print(f"_async_encode: {xq_d.shape=}, {xq_s=}")
         xq_d, xq_s = self._convex_scaling(dense=xq_d, sparse=xq_s)
         return xq_d, xq_s
 
diff --git a/tests/unit/test_hybrid_layer.py b/tests/unit/test_hybrid_layer.py
index f9f8ff6d4bd85d8d4ffd8e938df02a3a88030f62..b12ea2f5b12d199f809664a8b56630b0da9ae2a1 100644
--- a/tests/unit/test_hybrid_layer.py
+++ b/tests/unit/test_hybrid_layer.py
@@ -146,14 +146,12 @@ class TestHybridRouter:
         assert len(route_layer.routes) == 2, "route_layer.routes is not 2"
 
     def test_query_and_classification(self, openai_encoder, routes):
-        print("...1")
         route_layer = HybridRouter(
             encoder=openai_encoder,
             sparse_encoder=sparse_encoder,
             routes=routes,
             auto_sync="local",
         )
-        print("...2")
         route_layer.set_threshold(0.0)
         query_result = route_layer(UTTERANCES[0])
         assert query_result.name in ["Route 1", "Route 2"]