diff --git a/poetry.lock b/poetry.lock index eb4ec63cfc5ccdc24224397082ed0e3e10848cec..1b4125e3829874e2a60595031fadb25dac46b148 100644 --- a/poetry.lock +++ b/poetry.lock @@ -4220,7 +4220,7 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more bedrock = ["boto3"] google = ["google-cloud-aiplatform"] hybrid = ["pinecone-text"] -local = ["huggingface-hub", "llama-cpp-python", "tokenizers", "torch", "transformers"] +local = ["llama-cpp-python", "tokenizers", "torch", "transformers"] mistralai = ["mistralai"] pinecone = ["pinecone-client"] processing = ["matplotlib"] @@ -4230,4 +4230,4 @@ vision = ["pillow", "torch", "torchvision", "transformers"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<3.13" -content-hash = "0233c0677c37714b0de5f6e319e055fceac9718e8088c6ed56cf969d443e29b6" +content-hash = "17f2d76c59c4cb39899f69fe1e2242933a5747cfceb24a77a024d0cae0da1b3f" diff --git a/pyproject.toml b/pyproject.toml index 817f985966a295d5472e3d2ba2d5f4c7e6601485..88e515e82f09dc0edc0cc2f99767248c7d43e2b4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,7 +28,6 @@ pinecone-text = {version = ">=0.7.1,<0.8.0", optional = true} torch = {version = ">=2.1.0,<2.6.0", optional = true} transformers = {version = ">=4.36.2", optional = true} tokenizers = {version = ">=0.19", optional = true} -huggingface-hub = {version = "!=0.23.*", optional = true} llama-cpp-python = {version = "^0.2.28", optional = true} colorama = "^0.4.6" pinecone-client = {version=">=3.0.0,<4.0.0", optional = true} diff --git a/tests/unit/encoders/test_clip.py b/tests/unit/encoders/test_clip.py index 4247b279292e919d95bd7c4adf45d1b1d3d83615..de997e36deb3c22349fb2f8eeba58878b112fe26 100644 --- a/tests/unit/encoders/test_clip.py +++ b/tests/unit/encoders/test_clip.py @@ -4,14 +4,8 @@ import torch from PIL import Image from semantic_router.encoders import CLIPEncoder -from transformers import AutoTokenizer, AutoModel test_model_name = "aurelio-ai/sr-test-clip" - -# force the model download -tokenizer = AutoTokenizer.from_pretrained(test_model_name, force_download=True) -model = AutoModel.from_pretrained(test_model_name, force_download=True) - clip_encoder = CLIPEncoder(name=test_model_name) embed_dim = 64 diff --git a/tests/unit/encoders/test_huggingface.py b/tests/unit/encoders/test_huggingface.py index 3d21b1df684c96d0a8fc51145f2b62f01b8d5310..f14c7a685a497c4fbb7a6afca4c2f8f85c355007 100644 --- a/tests/unit/encoders/test_huggingface.py +++ b/tests/unit/encoders/test_huggingface.py @@ -4,14 +4,8 @@ import numpy as np import pytest from semantic_router.encoders.huggingface import HuggingFaceEncoder -from transformers import AutoTokenizer, AutoModel test_model_name = "aurelio-ai/sr-test-huggingface" - -# force the model download -tokenizer = AutoTokenizer.from_pretrained(test_model_name, force_download=True) -model = AutoModel.from_pretrained(test_model_name, force_download=True) - encoder = HuggingFaceEncoder(name=test_model_name) diff --git a/tests/unit/encoders/test_vit.py b/tests/unit/encoders/test_vit.py index d7e3d3bfd06a522fefb0e164f5ad519121aaf4a2..64f605e4720df8c3e9942eaec06ae192a4a37ce8 100644 --- a/tests/unit/encoders/test_vit.py +++ b/tests/unit/encoders/test_vit.py @@ -4,14 +4,8 @@ import torch from PIL import Image from semantic_router.encoders import VitEncoder -from transformers import AutoTokenizer, AutoModel test_model_name = "aurelio-ai/sr-test-vit" - -# force the model download -tokenizer = AutoTokenizer.from_pretrained(test_model_name, force_download=True) -model = AutoModel.from_pretrained(test_model_name, force_download=True) - vit_encoder = VitEncoder(name=test_model_name) embed_dim = 32