diff --git a/semantic_router/encoders/base.py b/semantic_router/encoders/base.py
index 70a3f6ee12904d19e23466b98a82e2f25f03543e..3fe68d8ca7c104e2ebcbb686a0762b169d66cf4a 100644
--- a/semantic_router/encoders/base.py
+++ b/semantic_router/encoders/base.py
@@ -14,6 +14,6 @@ class BaseEncoder(BaseModel):
 
     def __call__(self, docs: List[Any]) -> List[List[float]]:
         raise NotImplementedError("Subclasses must implement this method")
-    
+
     def acall(self, docs: List[Any]) -> List[List[float]]:
         raise NotImplementedError("Subclasses must implement this method")
diff --git a/semantic_router/encoders/openai.py b/semantic_router/encoders/openai.py
index 96303155151c4e43b5e3937f801f42120414be7f..6b2aeab38bf143687cb08bfdc92d742237aafd77 100644
--- a/semantic_router/encoders/openai.py
+++ b/semantic_router/encoders/openai.py
@@ -173,4 +173,3 @@ class OpenAIEncoder(BaseEncoder):
 
         embeddings = [embeds_obj.embedding for embeds_obj in embeds.data]
         return embeddings
-
diff --git a/semantic_router/encoders/zure.py b/semantic_router/encoders/zure.py
index 6968583aacde861250a2a8155ad414732bb2b9eb..dba936004d3f9faf83fa61be9f87056aac3f7021 100644
--- a/semantic_router/encoders/zure.py
+++ b/semantic_router/encoders/zure.py
@@ -130,7 +130,7 @@ class AzureOpenAIEncoder(BaseEncoder):
 
         embeddings = [embeds_obj.embedding for embeds_obj in embeds.data]
         return embeddings
-    
+
     async def acall(self, docs: List[str]) -> List[List[float]]:
         if self.async_client is None:
             raise ValueError("Azure OpenAI async client is not initialized.")
diff --git a/semantic_router/index/pinecone.py b/semantic_router/index/pinecone.py
index 04cfc796fdab4058b13d85a824287fc96cadd527..3572144ccd956134166e5172ceb909860f94b9cd 100644
--- a/semantic_router/index/pinecone.py
+++ b/semantic_router/index/pinecone.py
@@ -100,14 +100,14 @@ class PineconeIndex(BaseIndex):
             pinecone_args["namespace"] = self.namespace
 
         return Pinecone(**pinecone_args)
-    
+
     def _initialize_async_client(self, api_key: Optional[str] = None):
         async_client = aiohttp.ClientSession(
             headers={
                 "Api-Key": api_key,
                 "Content-Type": "application/json",
                 "X-Pinecone-API-Version": "2024-07",
-                "User-Agent": "source_tag=semanticrouter"
+                "User-Agent": "source_tag=semanticrouter",
             }
         )
         return async_client
@@ -158,7 +158,7 @@ class PineconeIndex(BaseIndex):
         if index is not None:
             self.host = self.client.describe_index(self.index_name)["host"]
         return index
-    
+
     async def _init_async_index(self, force_create: bool = False) -> Union[Any, None]:
         index_stats = None
         indexes = await self._async_list_indexes()
@@ -171,7 +171,7 @@ class PineconeIndex(BaseIndex):
                 dimension=self.dimensions,
                 metric=self.metric,
                 cloud=self.cloud,
-                region=self.region
+                region=self.region,
             )
             # TODO describe index and async sleep
             index_ready = "false"
@@ -332,7 +332,7 @@ class PineconeIndex(BaseIndex):
         scores = [result["score"] for result in results["matches"]]
         route_names = [result["metadata"]["sr_route"] for result in results["matches"]]
         return np.array(scores), route_names
-    
+
     async def aquery(
         self,
         vector: np.ndarray,
@@ -356,7 +356,6 @@ class PineconeIndex(BaseIndex):
         scores = [result["score"] for result in results["matches"]]
         route_names = [result["metadata"]["sr_route"] for result in results["matches"]]
         return np.array(scores), route_names
-        
 
     def delete_index(self):
         self.client.delete_index(self.index_name)
@@ -386,7 +385,7 @@ class PineconeIndex(BaseIndex):
     async def _async_list_indexes(self):
         async with self.async_client.get(f"{self.base_url}/indexes") as response:
             return await response.json(content_type=None)
-    
+
     async def _async_create_index(
         self,
         name: str,
@@ -399,12 +398,7 @@ class PineconeIndex(BaseIndex):
             "name": name,
             "dimension": dimension,
             "metric": metric,
-            "spec": {
-                "serverless": {
-                    "cloud": cloud,
-                    "region": region
-                }
-            },
+            "spec": {"serverless": {"cloud": cloud, "region": region}},
         }
         async with self.async_client.post(
             f"{self.base_url}/indexes",
@@ -412,7 +406,7 @@ class PineconeIndex(BaseIndex):
             json=params,
         ) as response:
             return await response.json(content_type=None)
-        
+
     async def _async_describe_index(self, name: str):
         async with self.async_client.get(f"{self.base_url}/indexes/{name}") as response:
             return await response.json(content_type=None)
diff --git a/semantic_router/layer.py b/semantic_router/layer.py
index 0b882ff67a440db1dc9d33e2eec3f30622d4ade3..6804352392bcc4ccab6772b40ae2cda5b3f3ab02 100644
--- a/semantic_router/layer.py
+++ b/semantic_router/layer.py
@@ -185,7 +185,6 @@ class RouteLayer:
         top_k: int = 5,
         aggregation: str = "sum",
     ):
-        logger.info("local")
         self.index: BaseIndex = index if index is not None else LocalIndex()
         if encoder is None:
             logger.warning(
@@ -270,6 +269,43 @@ class RouteLayer:
             # if no route passes threshold, return empty route choice
             return RouteChoice()
 
+    async def acall(
+        self,
+        text: Optional[str] = None,
+        vector: Optional[List[float]] = None,
+        simulate_static: bool = False,
+        route_filter: Optional[List[str]] = None,
+    ) -> RouteChoice:
+        # if no vector provided, encode text to get vector
+        if vector is None:
+            if text is None:
+                raise ValueError("Either text or vector must be provided")
+            vector = await self._async_encode(text=text)
+
+        route, top_class_scores = await self._async_retrieve_top_route(
+            vector, route_filter
+        )
+        passed = self._check_threshold(top_class_scores, route)
+        if passed and route is not None and not simulate_static:
+            if route.function_schemas and text is None:
+                raise ValueError(
+                    "Route has a function schema, but no text was provided."
+                )
+            if route.function_schemas and not isinstance(route.llm, BaseLLM):
+                raise NotImplementedError(
+                    "Dynamic routes not yet supported for async calls."
+                )
+            return route(text)
+        elif passed and route is not None and simulate_static:
+            return RouteChoice(
+                name=route.name,
+                function_call=None,
+                similarity_score=None,
+            )
+        else:
+            # if no route passes threshold, return empty route choice
+            return RouteChoice()
+
     def retrieve_multiple_routes(
         self,
         text: Optional[str] = None,
@@ -313,6 +349,19 @@ class RouteLayer:
         route = self.check_for_matching_routes(top_class)
         return route, top_class_scores
 
+    async def _async_retrieve_top_route(
+        self, vector: List[float], route_filter: Optional[List[str]] = None
+    ) -> Tuple[Optional[Route], List[float]]:
+        # get relevant results (scores and routes)
+        results = await self._async_retrieve(
+            xq=np.array(vector), top_k=self.top_k, route_filter=route_filter
+        )
+        # decide most relevant routes
+        top_class, top_class_scores = await self._async_semantic_classify(results)
+        # TODO do we need this check?
+        route = self.check_for_matching_routes(top_class)
+        return route, top_class_scores
+
     def _check_threshold(self, scores: List[float], route: Optional[Route]) -> bool:
         """
         Check if the route's score passes the specified threshold.
@@ -425,6 +474,13 @@ class RouteLayer:
         xq = np.squeeze(xq)  # Reduce to 1d array.
         return xq
 
+    async def _async_encode(self, text: str) -> Any:
+        """Given some text, encode it."""
+        # create query vector
+        xq = np.array(await self.encoder.acall(docs=[text]))
+        xq = np.squeeze(xq)  # Reduce to 1d array.
+        return xq
+
     def _retrieve(
         self, xq: Any, top_k: int = 5, route_filter: Optional[List[str]] = None
     ) -> List[Dict]:
@@ -435,6 +491,16 @@ class RouteLayer:
         )
         return [{"route": d, "score": s.item()} for d, s in zip(routes, scores)]
 
+    async def _async_retrieve(
+        self, xq: Any, top_k: int = 5, route_filter: Optional[List[str]] = None
+    ) -> List[Dict]:
+        """Given a query vector, retrieve the top_k most similar records."""
+        # get scores and routes
+        scores, routes = await self.index.aquery(
+            vector=xq, top_k=top_k, route_filter=route_filter
+        )
+        return [{"route": d, "score": s.item()} for d, s in zip(routes, scores)]
+
     def _set_aggregation_method(self, aggregation: str = "sum"):
         if aggregation == "sum":
             return lambda x: sum(x)
@@ -464,6 +530,25 @@ class RouteLayer:
             logger.warning("No classification found for semantic classifier.")
             return "", []
 
+    async def _async_semantic_classify(
+        self, query_results: List[Dict]
+    ) -> Tuple[str, List[float]]:
+        scores_by_class = await self.async_group_scores_by_class(query_results)
+
+        # Calculate total score for each class
+        total_scores = {
+            route: self.aggregation_method(scores)
+            for route, scores in scores_by_class.items()
+        }
+        top_class = max(total_scores, key=lambda x: total_scores[x], default=None)
+
+        # Return the top class and its associated scores
+        if top_class is not None:
+            return str(top_class), scores_by_class.get(top_class, [])
+        else:
+            logger.warning("No classification found for semantic classifier.")
+            return "", []
+
     def get(self, name: str) -> Optional[Route]:
         for route in self.routes:
             if route.name == name:
@@ -507,6 +592,19 @@ class RouteLayer:
                 scores_by_class[route] = [score]
         return scores_by_class
 
+    async def async_group_scores_by_class(
+        self, query_results: List[Dict]
+    ) -> Dict[str, List[float]]:
+        scores_by_class: Dict[str, List[float]] = {}
+        for result in query_results:
+            score = result["score"]
+            route = result["route"]
+            if route in scores_by_class:
+                scores_by_class[route].append(score)
+            else:
+                scores_by_class[route] = [score]
+        return scores_by_class
+
     def _pass_threshold(self, scores: List[float], threshold: float) -> bool:
         if scores:
             return max(scores) > threshold