diff --git a/.vscode/settings.json b/.vscode/settings.json
index ab66c194b3df56c15b019bcc41adfaa20fb6621b..14c396fbe813f6463931ee5af3ff2476a115fdad 100644
--- a/.vscode/settings.json
+++ b/.vscode/settings.json
@@ -1,5 +1,6 @@
 {
   "cSpell.words": [
+    "Astra",
     "Dockerized",
     "Langchain",
     "Milvus",
diff --git a/docker/.env.example b/docker/.env.example
index 0adabbdf7d0e1fcf4c71d013bdedf9cb6d703944..858e4098be04792ab8b1e355e48e40cfca406639 100644
--- a/docker/.env.example
+++ b/docker/.env.example
@@ -103,6 +103,11 @@ GID='1000'
 # ZILLIZ_ENDPOINT="https://sample.api.gcp-us-west1.zillizcloud.com"
 # ZILLIZ_API_TOKEN=api-token-here
 
+# Enable all below if you are using vector database: Astra DB.
+# VECTOR_DB="astra"
+# ASTRA_DB_APPLICATION_TOKEN=
+# ASTRA_DB_ENDPOINT=
+
 # CLOUD DEPLOYMENT VARIRABLES ONLY
 # AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
 
diff --git a/frontend/src/components/Modals/MangeWorkspace/Settings/index.jsx b/frontend/src/components/Modals/MangeWorkspace/Settings/index.jsx
index b288dc6c14b0456b8063c5d4b20de1f89328b281..a9471388fe689e7fc3841df6184adc8cf9542e64 100644
--- a/frontend/src/components/Modals/MangeWorkspace/Settings/index.jsx
+++ b/frontend/src/components/Modals/MangeWorkspace/Settings/index.jsx
@@ -44,6 +44,7 @@ export default function WorkspaceSettings({ active, workspace, settings }) {
   const formEl = useRef(null);
   const [saving, setSaving] = useState(false);
   const [hasChanges, setHasChanges] = useState(false);
+  const [deleting, setDeleting] = useState(false);
   const defaults = recommendedSettings(settings?.LLMProvider);
 
   const handleUpdate = async (e) => {
@@ -72,7 +73,15 @@ export default function WorkspaceSettings({ active, workspace, settings }) {
       )
     )
       return false;
-    await Workspace.delete(workspace.slug);
+
+    setDeleting(true);
+    const success = await Workspace.delete(workspace.slug);
+    if (!success) {
+      showToast("Workspace could not be deleted!", "error", { clear: true });
+      setDeleting(false);
+      return;
+    }
+
     workspace.slug === slug
       ? (window.location = paths.home())
       : window.location.reload();
@@ -310,7 +319,11 @@ export default function WorkspaceSettings({ active, workspace, settings }) {
         </div>
       </div>
       <div className="flex items-center justify-between p-2 md:p-6 space-x-2 border-t rounded-b border-gray-600">
-        <DeleteWorkspace workspace={workspace} onClick={deleteWorkspace} />
+        <DeleteWorkspace
+          deleting={deleting}
+          workspace={workspace}
+          onClick={deleteWorkspace}
+        />
         {hasChanges && (
           <button
             type="submit"
@@ -324,7 +337,7 @@ export default function WorkspaceSettings({ active, workspace, settings }) {
   );
 }
 
-function DeleteWorkspace({ workspace, onClick }) {
+function DeleteWorkspace({ deleting, workspace, onClick }) {
   const [canDelete, setCanDelete] = useState(false);
   useEffect(() => {
     async function fetchKeys() {
@@ -337,11 +350,12 @@ function DeleteWorkspace({ workspace, onClick }) {
   if (!canDelete) return null;
   return (
     <button
+      disabled={deleting}
       onClick={onClick}
       type="button"
-      className="transition-all duration-300 border border-transparent rounded-lg whitespace-nowrap text-sm px-5 py-2.5 focus:z-10 bg-transparent text-white hover:text-white hover:bg-red-600"
+      className="transition-all duration-300 border border-transparent rounded-lg whitespace-nowrap text-sm px-5 py-2.5 focus:z-10 bg-transparent text-white hover:text-white hover:bg-red-600 disabled:bg-red-600 disabled:text-red-200 disabled:animate-pulse"
     >
-      Delete Workspace
+      {deleting ? "Deleting Workspace..." : "Delete Workspace"}
     </button>
   );
 }
diff --git a/frontend/src/components/VectorDBSelection/AstraDBOptions/index.jsx b/frontend/src/components/VectorDBSelection/AstraDBOptions/index.jsx
new file mode 100644
index 0000000000000000000000000000000000000000..11990dc44c82e8dc96f62a0759df7f4a4602e012
--- /dev/null
+++ b/frontend/src/components/VectorDBSelection/AstraDBOptions/index.jsx
@@ -0,0 +1,41 @@
+export default function AstraDBOptions({ settings }) {
+  return (
+    <div className="w-full flex flex-col gap-y-4">
+      <div className="w-full flex items-center gap-4">
+        <div className="flex flex-col w-60">
+          <label className="text-white text-sm font-semibold block mb-4">
+            Astra DB Endpoint
+          </label>
+          <input
+            type="url"
+            name="AstraDBEndpoint"
+            className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
+            placeholder="Astra DB API endpoint"
+            defaultValue={settings?.AstraDBEndpoint}
+            required={true}
+            autoComplete="off"
+            spellCheck={false}
+          />
+        </div>
+
+        <div className="flex flex-col w-60">
+          <label className="text-white text-sm font-semibold block mb-4">
+            Astra DB Application Token
+          </label>
+          <input
+            type="password"
+            name="AstraDBApplicationToken"
+            className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
+            placeholder="AstraCS:..."
+            defaultValue={
+              settings?.AstraDBApplicationToken ? "*".repeat(20) : ""
+            }
+            required={true}
+            autoComplete="off"
+            spellCheck={false}
+          />
+        </div>
+      </div>
+    </div>
+  );
+}
diff --git a/frontend/src/media/vectordbs/astraDB.png b/frontend/src/media/vectordbs/astraDB.png
new file mode 100644
index 0000000000000000000000000000000000000000..3403c72f2c35ffa793b4736013a5d24bcd2b71c1
Binary files /dev/null and b/frontend/src/media/vectordbs/astraDB.png differ
diff --git a/frontend/src/pages/GeneralSettings/VectorDatabase/index.jsx b/frontend/src/pages/GeneralSettings/VectorDatabase/index.jsx
index f5f697a72c12cf85e9784b50b6571ba0f7fd4c57..dd43fda5703a57845cee5fe2d0be7c7745cc9832 100644
--- a/frontend/src/pages/GeneralSettings/VectorDatabase/index.jsx
+++ b/frontend/src/pages/GeneralSettings/VectorDatabase/index.jsx
@@ -10,6 +10,7 @@ import WeaviateLogo from "@/media/vectordbs/weaviate.png";
 import QDrantLogo from "@/media/vectordbs/qdrant.png";
 import MilvusLogo from "@/media/vectordbs/milvus.png";
 import ZillizLogo from "@/media/vectordbs/zilliz.png";
+import AstraDBLogo from "@/media/vectordbs/astraDB.png";
 import PreLoader from "@/components/Preloader";
 import ChangeWarningModal from "@/components/ChangeWarning";
 import { MagnifyingGlass } from "@phosphor-icons/react";
@@ -23,6 +24,7 @@ import MilvusDBOptions from "@/components/VectorDBSelection/MilvusDBOptions";
 import ZillizCloudOptions from "@/components/VectorDBSelection/ZillizCloudOptions";
 import { useModal } from "@/hooks/useModal";
 import ModalWrapper from "@/components/ModalWrapper";
+import AstraDBOptions from "@/components/VectorDBSelection/AstraDBOptions";
 
 export default function GeneralVectorDatabase() {
   const [saving, setSaving] = useState(false);
@@ -100,6 +102,13 @@ export default function GeneralVectorDatabase() {
       options: <MilvusDBOptions settings={settings} />,
       description: "Open-source, highly scalable, and blazing fast.",
     },
+    {
+      name: "AstraDB",
+      value: "astra",
+      logo: AstraDBLogo,
+      options: <AstraDBOptions settings={settings} />,
+      description: "Vector Search for Real-world GenAI.",
+    },
   ];
 
   const updateVectorChoice = (selection) => {
diff --git a/frontend/src/pages/OnboardingFlow/Steps/DataHandling/index.jsx b/frontend/src/pages/OnboardingFlow/Steps/DataHandling/index.jsx
index ae573027639ea8318a8bdd1dfc45deb48c2d871c..60a3b6da4d5c1b2792899750900c4bff108042a8 100644
--- a/frontend/src/pages/OnboardingFlow/Steps/DataHandling/index.jsx
+++ b/frontend/src/pages/OnboardingFlow/Steps/DataHandling/index.jsx
@@ -11,6 +11,7 @@ import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
 import LocalAiLogo from "@/media/llmprovider/localai.png";
 import MistralLogo from "@/media/llmprovider/mistral.jpeg";
 import ZillizLogo from "@/media/vectordbs/zilliz.png";
+import AstraDBLogo from "@/media/vectordbs/astraDB.png";
 import ChromaLogo from "@/media/vectordbs/chroma.png";
 import PineconeLogo from "@/media/vectordbs/pinecone.png";
 import LanceDbLogo from "@/media/vectordbs/lancedb.png";
@@ -147,6 +148,13 @@ const VECTOR_DB_PRIVACY = {
     ],
     logo: ZillizLogo,
   },
+  astra: {
+    name: "AstraDB",
+    description: [
+      "Your vectors and document text are stored on your cloud AstraDB database.",
+    ],
+    logo: AstraDBLogo,
+  },
   lancedb: {
     name: "LanceDB",
     description: [
diff --git a/frontend/src/pages/OnboardingFlow/Steps/VectorDatabaseConnection/index.jsx b/frontend/src/pages/OnboardingFlow/Steps/VectorDatabaseConnection/index.jsx
index af0b5662d2a707b526d76a89f25a0c5c1234f990..98034528d516e012fb196c79d7459abc24a62cd3 100644
--- a/frontend/src/pages/OnboardingFlow/Steps/VectorDatabaseConnection/index.jsx
+++ b/frontend/src/pages/OnboardingFlow/Steps/VectorDatabaseConnection/index.jsx
@@ -7,6 +7,7 @@ import WeaviateLogo from "@/media/vectordbs/weaviate.png";
 import QDrantLogo from "@/media/vectordbs/qdrant.png";
 import MilvusLogo from "@/media/vectordbs/milvus.png";
 import ZillizLogo from "@/media/vectordbs/zilliz.png";
+import AstraDBLogo from "@/media/vectordbs/astraDB.png";
 import System from "@/models/system";
 import paths from "@/utils/paths";
 import PineconeDBOptions from "@/components/VectorDBSelection/PineconeDBOptions";
@@ -16,6 +17,7 @@ import WeaviateDBOptions from "@/components/VectorDBSelection/WeaviateDBOptions"
 import LanceDBOptions from "@/components/VectorDBSelection/LanceDBOptions";
 import MilvusOptions from "@/components/VectorDBSelection/MilvusDBOptions";
 import ZillizCloudOptions from "@/components/VectorDBSelection/ZillizCloudOptions";
+import AstraDBOptions from "@/components/VectorDBSelection/AstraDBOptions";
 import showToast from "@/utils/toast";
 import { useNavigate } from "react-router-dom";
 import VectorDBItem from "@/components/VectorDBSelection/VectorDBItem";
@@ -100,6 +102,13 @@ export default function VectorDatabaseConnection({
       options: <MilvusOptions settings={settings} />,
       description: "Open-source, highly scalable, and blazing fast.",
     },
+    {
+      name: "AstraDB",
+      value: "astra",
+      logo: AstraDBLogo,
+      options: <AstraDBOptions settings={settings} />,
+      description: "Vector Search for Real-world GenAI.",
+    },
   ];
 
   function handleForward() {
diff --git a/server/.env.example b/server/.env.example
index e44748b41f5eb9c01e795e3f9f891c1087385c0e..f497fea91de8a9f09688d541e894eafdd94389ba 100644
--- a/server/.env.example
+++ b/server/.env.example
@@ -76,6 +76,11 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
 # PINECONE_API_KEY=
 # PINECONE_INDEX=
 
+# Enable all below if you are using vector database: Astra DB.
+# VECTOR_DB="astra"
+# ASTRA_DB_APPLICATION_TOKEN=
+# ASTRA_DB_ENDPOINT=
+
 # Enable all below if you are using vector database: LanceDB.
 VECTOR_DB="lancedb"
 
diff --git a/server/models/systemSettings.js b/server/models/systemSettings.js
index b4e93bde627823c6ede6951c972d8990a3a84ed2..b8c46524cfaff11fb8b34f5fe73bb10ae0b5105d 100644
--- a/server/models/systemSettings.js
+++ b/server/models/systemSettings.js
@@ -68,6 +68,12 @@ const SystemSettings = {
             ZillizApiToken: process.env.ZILLIZ_API_TOKEN,
           }
         : {}),
+      ...(vectorDB === "astra"
+        ? {
+            AstraDBApplicationToken: process?.env?.ASTRA_DB_APPLICATION_TOKEN,
+            AstraDBEndpoint: process?.env?.ASTRA_DB_ENDPOINT,
+          }
+        : {}),
       LLMProvider: llmProvider,
       ...(llmProvider === "openai"
         ? {
diff --git a/server/package.json b/server/package.json
index c8a41b795eb63243d821f09e3f244792a54032d3..bf1b85c06e866fd1425aa794d833029812ea8fad 100644
--- a/server/package.json
+++ b/server/package.json
@@ -22,6 +22,7 @@
   "dependencies": {
     "@anthropic-ai/sdk": "^0.8.1",
     "@azure/openai": "1.0.0-beta.10",
+    "@datastax/astra-db-ts": "^0.1.3",
     "@google/generative-ai": "^0.1.3",
     "@googleapis/youtube": "^9.0.0",
     "@pinecone-database/pinecone": "^2.0.1",
diff --git a/server/utils/helpers/index.js b/server/utils/helpers/index.js
index b72bb7977b7857b788c7b977950d7c44560cf673..53a76faebf269ea7bbf4965261d932d1f83d7042 100644
--- a/server/utils/helpers/index.js
+++ b/server/utils/helpers/index.js
@@ -22,6 +22,9 @@ function getVectorDbClass() {
     case "zilliz":
       const { Zilliz } = require("../vectorDbProviders/zilliz");
       return Zilliz;
+    case "astra":
+      const { AstraDB } = require("../vectorDbProviders/astra");
+      return AstraDB;
     default:
       throw new Error("ENV: No VECTOR_DB value found in environment!");
   }
diff --git a/server/utils/helpers/updateENV.js b/server/utils/helpers/updateENV.js
index b061061e82de0ac7f296e9453d38568716bf0ed6..50b423474a8c12327572520c884b259f835172f0 100644
--- a/server/utils/helpers/updateENV.js
+++ b/server/utils/helpers/updateENV.js
@@ -204,6 +204,17 @@ const KEY_MAPPING = {
     checks: [isNotEmpty],
   },
 
+  // Astra DB Options
+
+  AstraDBApplicationToken: {
+    envKey: "ASTRA_DB_APPLICATION_TOKEN",
+    checks: [isNotEmpty],
+  },
+  AstraDBEndpoint: {
+    envKey: "ASTRA_DB_ENDPOINT",
+    checks: [isNotEmpty],
+  },
+
   // Together Ai Options
   TogetherAiApiKey: {
     envKey: "TOGETHER_AI_API_KEY",
@@ -322,6 +333,7 @@ function supportedVectorDB(input = "") {
     "qdrant",
     "milvus",
     "zilliz",
+    "astra",
   ];
   return supported.includes(input)
     ? null
diff --git a/server/utils/vectorDbProviders/astra/ASTRA_SETUP.md b/server/utils/vectorDbProviders/astra/ASTRA_SETUP.md
new file mode 100644
index 0000000000000000000000000000000000000000..e3749f0779468a415735a7e64ca79df65f52d534
--- /dev/null
+++ b/server/utils/vectorDbProviders/astra/ASTRA_SETUP.md
@@ -0,0 +1,22 @@
+# How to setup Astra Vector Database for AnythingLLM
+
+[Official Astra DB Docs](https://docs.datastax.com/en/astra/astra-db-vector/get-started/quickstart.html) for reference.
+
+### How to get started
+
+**Requirements**
+
+- Astra Vector Database with active status.
+
+**Instructions**
+
+- [Create an Astra account or sign in to an existing Astra account](astra.datastax.com)
+- Create an Astra Serverless(Vector) Database.
+- Make sure DB is in active state.
+- Get `API ENDPOINT`and `Application Token` from Overview screen
+
+```
+VECTOR_DB="astra"
+ASTRA_DB_ENDPOINT=Astra DB API endpoint
+ASTRA_DB_APPLICATION_TOKEN=AstraCS:..
+```
diff --git a/server/utils/vectorDbProviders/astra/index.js b/server/utils/vectorDbProviders/astra/index.js
new file mode 100644
index 0000000000000000000000000000000000000000..df983d4f488a393375fc3f8c88cb07af17f5e224
--- /dev/null
+++ b/server/utils/vectorDbProviders/astra/index.js
@@ -0,0 +1,380 @@
+const { AstraDB: AstraClient } = require("@datastax/astra-db-ts");
+const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
+const { storeVectorResult, cachedVectorInformation } = require("../../files");
+const { v4: uuidv4 } = require("uuid");
+const {
+  toChunks,
+  getLLMProvider,
+  getEmbeddingEngineSelection,
+} = require("../../helpers");
+
+const AstraDB = {
+  name: "AstraDB",
+  connect: async function () {
+    if (process.env.VECTOR_DB !== "astra")
+      throw new Error("AstraDB::Invalid ENV settings");
+
+    const client = new AstraClient(
+      process?.env?.ASTRA_DB_APPLICATION_TOKEN,
+      process?.env?.ASTRA_DB_ENDPOINT
+    );
+    return { client };
+  },
+  heartbeat: async function () {
+    return { heartbeat: Number(new Date()) };
+  },
+  // Astra interface will return a valid collection object even if the collection
+  // does not actually exist. So we run a simple check which will always throw
+  // when the table truly does not exist. Faster than iterating all collections.
+  isRealCollection: async function (astraCollection = null) {
+    if (!astraCollection) return false;
+    return await astraCollection
+      .countDocuments()
+      .then(() => true)
+      .catch(() => false);
+  },
+  totalVectors: async function () {
+    const { client } = await this.connect();
+    const collectionNames = await this.allNamespaces(client);
+    var totalVectors = 0;
+    for (const name of collectionNames) {
+      const collection = await client.collection(name).catch(() => null);
+      const count = await collection.countDocuments().catch(() => 0);
+      totalVectors += count ? count : 0;
+    }
+    return totalVectors;
+  },
+  namespaceCount: async function (_namespace = null) {
+    const { client } = await this.connect();
+    const namespace = await this.namespace(client, _namespace);
+    return namespace?.vectorCount || 0;
+  },
+  namespace: async function (client, namespace = null) {
+    if (!namespace) throw new Error("No namespace value provided.");
+    const collection = await client.collection(namespace).catch(() => null);
+    if (!(await this.isRealCollection(collection))) return null;
+
+    const count = await collection.countDocuments().catch((e) => {
+      console.error("Astra::namespaceExists", e.message);
+      return null;
+    });
+
+    return {
+      name: namespace,
+      ...collection,
+      vectorCount: typeof count === "number" ? count : 0,
+    };
+  },
+  hasNamespace: async function (namespace = null) {
+    if (!namespace) return false;
+    const { client } = await this.connect();
+    return await this.namespaceExists(client, namespace);
+  },
+  namespaceExists: async function (client, namespace = null) {
+    if (!namespace) throw new Error("No namespace value provided.");
+    const collection = await client.collection(namespace);
+    return await this.isRealCollection(collection);
+  },
+  deleteVectorsInNamespace: async function (client, namespace = null) {
+    await client.dropCollection(namespace);
+    return true;
+  },
+  // AstraDB requires a dimension aspect for collection creation
+  // we pass this in from the first chunk to infer the dimensions like other
+  // providers do.
+  getOrCreateCollection: async function (client, namespace, dimensions = null) {
+    const isExists = await this.namespaceExists(client, namespace);
+    if (!isExists) {
+      if (!dimensions)
+        throw new Error(
+          `AstraDB:getOrCreateCollection Unable to infer vector dimension from input. Open an issue on Github for support.`
+        );
+
+      await client.createCollection(namespace, {
+        vector: {
+          dimension: dimensions,
+          metric: "cosine",
+        },
+      });
+    }
+    return await client.collection(namespace);
+  },
+  addDocumentToNamespace: async function (
+    namespace,
+    documentData = {},
+    fullFilePath = null
+  ) {
+    const { DocumentVectors } = require("../../../models/vectors");
+    try {
+      let vectorDimension = null;
+      const { pageContent, docId, ...metadata } = documentData;
+      if (!pageContent || pageContent.length == 0) return false;
+
+      console.log("Adding new vectorized document into namespace", namespace);
+      const cacheResult = await cachedVectorInformation(fullFilePath);
+      if (cacheResult.exists) {
+        const { client } = await this.connect();
+        const { chunks } = cacheResult;
+        const documentVectors = [];
+        vectorDimension = chunks[0][0].values.length || null;
+
+        const collection = await this.getOrCreateCollection(
+          client,
+          namespace,
+          vectorDimension
+        );
+        if (!(await this.isRealCollection(collection)))
+          throw new Error("Failed to create new AstraDB collection!", {
+            namespace,
+          });
+
+        for (const chunk of chunks) {
+          // Before sending to Astra and saving the records to our db
+          // we need to assign the id of each chunk that is stored in the cached file.
+          const newChunks = chunk.map((chunk) => {
+            const _id = uuidv4();
+            documentVectors.push({ docId, vectorId: _id });
+            return {
+              _id: _id,
+              $vector: chunk.values,
+              metadata: chunk.metadata || {},
+            };
+          });
+
+          await collection.insertMany(newChunks);
+        }
+        await DocumentVectors.bulkInsert(documentVectors);
+        return { vectorized: true, error: null };
+      }
+
+      const textSplitter = new RecursiveCharacterTextSplitter({
+        chunkSize:
+          getEmbeddingEngineSelection()?.embeddingMaxChunkLength || 1_000,
+        chunkOverlap: 20,
+      });
+      const textChunks = await textSplitter.splitText(pageContent);
+
+      console.log("Chunks created from document:", textChunks.length);
+      const LLMConnector = getLLMProvider();
+      const documentVectors = [];
+      const vectors = [];
+      const vectorValues = await LLMConnector.embedChunks(textChunks);
+
+      if (!!vectorValues && vectorValues.length > 0) {
+        for (const [i, vector] of vectorValues.entries()) {
+          if (!vectorDimension) vectorDimension = vector.length;
+          const vectorRecord = {
+            _id: uuidv4(),
+            $vector: vector,
+            metadata: { ...metadata, text: textChunks[i] },
+          };
+
+          vectors.push(vectorRecord);
+          documentVectors.push({ docId, vectorId: vectorRecord._id });
+        }
+      } else {
+        throw new Error(
+          "Could not embed document chunks! This document will not be recorded."
+        );
+      }
+      const { client } = await this.connect();
+      const collection = await this.getOrCreateCollection(
+        client,
+        namespace,
+        vectorDimension
+      );
+      if (!(await this.isRealCollection(collection)))
+        throw new Error("Failed to create new AstraDB collection!", {
+          namespace,
+        });
+
+      if (vectors.length > 0) {
+        const chunks = [];
+
+        console.log("Inserting vectorized chunks into Astra DB.");
+
+        // AstraDB has maximum upsert size of 20 records per-request so we have to use a lower chunk size here
+        // in order to do the queries - this takes a lot more time than other providers but there
+        // is no way around it. This will save the vector-cache with the same layout, so we don't
+        // have to chunk again for cached files.
+        for (const chunk of toChunks(vectors, 20)) {
+          chunks.push(
+            chunk.map((c) => {
+              return { id: c._id, values: c.$vector, metadata: c.metadata };
+            })
+          );
+          await collection.insertMany(chunk);
+        }
+        await storeVectorResult(chunks, fullFilePath);
+      }
+
+      await DocumentVectors.bulkInsert(documentVectors);
+      return { vectorized: true, error: null };
+    } catch (e) {
+      console.error("addDocumentToNamespace", e.message);
+      return { vectorized: false, error: e.message };
+    }
+  },
+  deleteDocumentFromNamespace: async function (namespace, docId) {
+    const { DocumentVectors } = require("../../../models/vectors");
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace)))
+      throw new Error(
+        "Invalid namespace - has it been collected and populated yet?"
+      );
+    const collection = await client.collection(namespace);
+
+    const knownDocuments = await DocumentVectors.where({ docId });
+    if (knownDocuments.length === 0) return;
+
+    const vectorIds = knownDocuments.map((doc) => doc.vectorId);
+    for (const id of vectorIds) {
+      await collection.deleteMany({
+        _id: id,
+      });
+    }
+
+    const indexes = knownDocuments.map((doc) => doc.id);
+    await DocumentVectors.deleteIds(indexes);
+    return true;
+  },
+  performSimilaritySearch: async function ({
+    namespace = null,
+    input = "",
+    LLMConnector = null,
+    similarityThreshold = 0.25,
+    topN = 4,
+  }) {
+    if (!namespace || !input || !LLMConnector)
+      throw new Error("Invalid request to performSimilaritySearch.");
+
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace))) {
+      return {
+        contextTexts: [],
+        sources: [],
+        message:
+          "Invalid query - no namespace found for workspace in vector db!",
+      };
+    }
+
+    const queryVector = await LLMConnector.embedTextInput(input);
+    const { contextTexts, sourceDocuments } = await this.similarityResponse(
+      client,
+      namespace,
+      queryVector,
+      similarityThreshold,
+      topN
+    );
+
+    const sources = sourceDocuments.map((metadata, i) => {
+      return { ...metadata, text: contextTexts[i] };
+    });
+    return {
+      contextTexts,
+      sources: this.curateSources(sources),
+      message: false,
+    };
+  },
+  similarityResponse: async function (
+    client,
+    namespace,
+    queryVector,
+    similarityThreshold = 0.25,
+    topN = 4
+  ) {
+    const result = {
+      contextTexts: [],
+      sourceDocuments: [],
+      scores: [],
+    };
+
+    const collection = await client.collection(namespace);
+    const responses = await collection
+      .find(
+        {},
+        {
+          sort: { $vector: queryVector },
+          limit: topN,
+          includeSimilarity: true,
+        }
+      )
+      .toArray();
+
+    responses.forEach((response) => {
+      if (response.$similarity < similarityThreshold) return;
+      result.contextTexts.push(response.metadata.text);
+      result.sourceDocuments.push(response);
+      result.scores.push(response.$similarity);
+    });
+    return result;
+  },
+  allNamespaces: async function (client) {
+    try {
+      let header = new Headers();
+      header.append("Token", client?.httpClient?.applicationToken);
+      header.append("Content-Type", "application/json");
+
+      let raw = JSON.stringify({
+        findCollections: {},
+      });
+
+      let requestOptions = {
+        method: "POST",
+        headers: header,
+        body: raw,
+        redirect: "follow",
+      };
+
+      const call = await fetch(client?.httpClient?.baseUrl, requestOptions);
+      const resp = await call?.text();
+      const collections = resp ? JSON.parse(resp)?.status?.collections : [];
+      return collections;
+    } catch (e) {
+      console.error("Astra::AllNamespace", e);
+      return [];
+    }
+  },
+  "namespace-stats": async function (reqBody = {}) {
+    const { namespace = null } = reqBody;
+    if (!namespace) throw new Error("namespace required");
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace)))
+      throw new Error("Namespace by that name does not exist.");
+    const stats = await this.namespace(client, namespace);
+    return stats
+      ? stats
+      : { message: "No stats were able to be fetched from DB for namespace" };
+  },
+  "delete-namespace": async function (reqBody = {}) {
+    const { namespace = null } = reqBody;
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace)))
+      throw new Error("Namespace by that name does not exist.");
+
+    const details = await this.namespace(client, namespace);
+    await this.deleteVectorsInNamespace(client, namespace);
+    return {
+      message: `Namespace ${namespace} was deleted along with ${
+        details?.vectorCount || "all"
+      } vectors.`,
+    };
+  },
+  curateSources: function (sources = []) {
+    const documents = [];
+    for (const source of sources) {
+      if (Object.keys(source).length > 0) {
+        const metadata = source.hasOwnProperty("metadata")
+          ? source.metadata
+          : source;
+        documents.push({
+          ...metadata,
+        });
+      }
+    }
+
+    return documents;
+  },
+};
+
+module.exports.AstraDB = AstraDB;
diff --git a/server/yarn.lock b/server/yarn.lock
index 67b4e11b67c7d7681fdc1ce22ffa2f9f8d1fbc20..ecc8f1a75555e57078e20566c12d814f70661aba 100644
--- a/server/yarn.lock
+++ b/server/yarn.lock
@@ -174,6 +174,15 @@
     enabled "2.0.x"
     kuler "^2.0.0"
 
+"@datastax/astra-db-ts@^0.1.3":
+  version "0.1.3"
+  resolved "https://registry.yarnpkg.com/@datastax/astra-db-ts/-/astra-db-ts-0.1.3.tgz#fcc25cda8d146c06278860054f09d687ff031568"
+  integrity sha512-7lnpym0HhUtfJVd8+vu6vYdDQpFyYof7TVLFVD2fgoIjUwj3EksFXmqDqicLAlLferZDllqSVthX9pXQ5Rdapw==
+  dependencies:
+    axios "^1.4.0"
+    bson "^6.2.0"
+    winston "^3.7.2"
+
 "@eslint-community/eslint-utils@^4.2.0":
   version "4.4.0"
   resolved "https://registry.yarnpkg.com/@eslint-community/eslint-utils/-/eslint-utils-4.4.0.tgz#a23514e8fb9af1269d5f7788aa556798d61c6b59"
@@ -1353,6 +1362,11 @@ braces@~3.0.2:
   dependencies:
     fill-range "^7.0.1"
 
+bson@^6.2.0:
+  version "6.2.0"
+  resolved "https://registry.yarnpkg.com/bson/-/bson-6.2.0.tgz#4b6acafc266ba18eeee111373c2699304a9ba0a3"
+  integrity sha512-ID1cI+7bazPDyL9wYy9GaQ8gEEohWvcUl/Yf0dIdutJxnmInEEyCsb4awy/OiBfall7zBA179Pahi3vCdFze3Q==
+
 btoa-lite@^1.0.0:
   version "1.0.0"
   resolved "https://registry.yarnpkg.com/btoa-lite/-/btoa-lite-1.0.0.tgz#337766da15801210fdd956c22e9c6891ab9d0337"
@@ -5636,7 +5650,7 @@ winston-transport@^4.5.0:
     readable-stream "^3.6.0"
     triple-beam "^1.3.0"
 
-winston@^3.9.0:
+winston@^3.7.2, winston@^3.9.0:
   version "3.11.0"
   resolved "https://registry.yarnpkg.com/winston/-/winston-3.11.0.tgz#2d50b0a695a2758bb1c95279f0a88e858163ed91"
   integrity sha512-L3yR6/MzZAOl0DsysUXHVjOwv8mKZ71TrA/41EIduGpOOV5LQVodqN+QdQ6BS6PJ/RdIshZhq84P/fStEZkk7g==