diff --git a/azure-pipelines-wheels.yml b/azure-pipelines-wheels.yml index c89435954294ec4bd36c815ce421102207becc88..ebe704f12e2c58b069b89344116fbb532bd86ad2 100644 --- a/azure-pipelines-wheels.yml +++ b/azure-pipelines-wheels.yml @@ -89,5 +89,6 @@ jobs: sed -i "s|# py_noaa|py_noaa|g" ${requirement_file} sed -i "s|# bme680|bme680|g" ${requirement_file} sed -i "s|# python-gammu|python-gammu|g" ${requirement_file} + sed -i "s|# tf-models-official|tf-models-official|g" ${requirement_file} done displayName: 'Prepare requirements files for Home Assistant wheels' diff --git a/homeassistant/components/tensorflow/image_processing.py b/homeassistant/components/tensorflow/image_processing.py index f4eb5342c4653e660e922273423064c8614807d8..d6d20c63f56de3bbebf4c8de54db3d08fc999824 100644 --- a/homeassistant/components/tensorflow/image_processing.py +++ b/homeassistant/components/tensorflow/image_processing.py @@ -3,9 +3,11 @@ import io import logging import os import sys +import time from PIL import Image, ImageDraw, UnidentifiedImageError import numpy as np +import tensorflow as tf import voluptuous as vol from homeassistant.components.image_processing import ( @@ -16,16 +18,21 @@ from homeassistant.components.image_processing import ( PLATFORM_SCHEMA, ImageProcessingEntity, ) +from homeassistant.const import EVENT_HOMEASSISTANT_START from homeassistant.core import split_entity_id from homeassistant.helpers import template import homeassistant.helpers.config_validation as cv from homeassistant.util.pil import draw_box +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" + +DOMAIN = "tensorflow" _LOGGER = logging.getLogger(__name__) ATTR_MATCHES = "matches" ATTR_SUMMARY = "summary" ATTR_TOTAL_MATCHES = "total_matches" +ATTR_PROCESS_TIME = "process_time" CONF_AREA = "area" CONF_BOTTOM = "bottom" @@ -34,6 +41,7 @@ CONF_CATEGORY = "category" CONF_FILE_OUT = "file_out" CONF_GRAPH = "graph" CONF_LABELS = "labels" +CONF_LABEL_OFFSET = "label_offset" CONF_LEFT = "left" CONF_MODEL = "model" CONF_MODEL_DIR = "model_dir" @@ -58,12 +66,13 @@ PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( vol.Optional(CONF_FILE_OUT, default=[]): vol.All(cv.ensure_list, [cv.template]), vol.Required(CONF_MODEL): vol.Schema( { - vol.Required(CONF_GRAPH): cv.isfile, + vol.Required(CONF_GRAPH): cv.isdir, vol.Optional(CONF_AREA): AREA_SCHEMA, vol.Optional(CONF_CATEGORIES, default=[]): vol.All( cv.ensure_list, [vol.Any(cv.string, CATEGORY_SCHEMA)] ), vol.Optional(CONF_LABELS): cv.isfile, + vol.Optional(CONF_LABEL_OFFSET, default=1): int, vol.Optional(CONF_MODEL_DIR): cv.isdir, } ), @@ -71,17 +80,40 @@ PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( ) +def get_model_detection_function(model): + """Get a tf.function for detection.""" + + @tf.function + def detect_fn(image): + """Detect objects in image.""" + + image, shapes = model.preprocess(image) + prediction_dict = model.predict(image, shapes) + detections = model.postprocess(prediction_dict, shapes) + + return detections + + return detect_fn + + def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the TensorFlow image processing platform.""" - model_config = config.get(CONF_MODEL) + model_config = config[CONF_MODEL] model_dir = model_config.get(CONF_MODEL_DIR) or hass.config.path("tensorflow") labels = model_config.get(CONF_LABELS) or hass.config.path( "tensorflow", "object_detection", "data", "mscoco_label_map.pbtxt" ) + checkpoint = os.path.join(model_config[CONF_GRAPH], "checkpoint") + pipeline_config = os.path.join(model_config[CONF_GRAPH], "pipeline.config") # Make sure locations exist - if not os.path.isdir(model_dir) or not os.path.exists(labels): - _LOGGER.error("Unable to locate tensorflow models or label map") + if ( + not os.path.isdir(model_dir) + or not os.path.isdir(checkpoint) + or not os.path.exists(pipeline_config) + or not os.path.exists(labels) + ): + _LOGGER.error("Unable to locate tensorflow model or label map") return # append custom model path to sys.path @@ -89,18 +121,17 @@ def setup_platform(hass, config, add_entities, discovery_info=None): try: # Verify that the TensorFlow Object Detection API is pre-installed - os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # These imports shouldn't be moved to the top, because they depend on code from the model_dir. # (The model_dir is created during the manual setup process. See integration docs.) - import tensorflow as tf # pylint: disable=import-outside-toplevel # pylint: disable=import-outside-toplevel - from object_detection.utils import label_map_util + from object_detection.utils import config_util, label_map_util + from object_detection.builders import model_builder except ImportError: _LOGGER.error( "No TensorFlow Object Detection library found! Install or compile " "for your system following instructions here: " - "https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md" + "https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md#installation" ) return @@ -113,22 +144,45 @@ def setup_platform(hass, config, add_entities, discovery_info=None): "PIL at reduced resolution" ) - # Set up Tensorflow graph, session, and label map to pass to processor - # pylint: disable=no-member - detection_graph = tf.Graph() - with detection_graph.as_default(): - od_graph_def = tf.GraphDef() - with tf.gfile.GFile(model_config.get(CONF_GRAPH), "rb") as fid: - serialized_graph = fid.read() - od_graph_def.ParseFromString(serialized_graph) - tf.import_graph_def(od_graph_def, name="") - - session = tf.Session(graph=detection_graph) - label_map = label_map_util.load_labelmap(labels) - categories = label_map_util.convert_label_map_to_categories( - label_map, max_num_classes=90, use_display_name=True + hass.data[DOMAIN] = {CONF_MODEL: None} + + def tensorflow_hass_start(_event): + """Set up TensorFlow model on hass start.""" + start = time.perf_counter() + + # Load pipeline config and build a detection model + pipeline_configs = config_util.get_configs_from_pipeline_file(pipeline_config) + detection_model = model_builder.build( + model_config=pipeline_configs["model"], is_training=False + ) + + # Restore checkpoint + ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) + ckpt.restore(os.path.join(checkpoint, "ckpt-0")).expect_partial() + + _LOGGER.debug( + "Model checkpoint restore took %d seconds", time.perf_counter() - start + ) + + model = get_model_detection_function(detection_model) + + # Preload model cache with empty image tensor + inp = np.zeros([2160, 3840, 3], dtype=np.uint8) + # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. + input_tensor = tf.convert_to_tensor(inp, dtype=tf.float32) + # The model expects a batch of images, so add an axis with `tf.newaxis`. + input_tensor = input_tensor[tf.newaxis, ...] + # Run inference + model(input_tensor) + + _LOGGER.debug("Model load took %d seconds", time.perf_counter() - start) + hass.data[DOMAIN][CONF_MODEL] = model + + hass.bus.listen_once(EVENT_HOMEASSISTANT_START, tensorflow_hass_start) + + category_index = label_map_util.create_category_index_from_labelmap( + labels, use_display_name=True ) - category_index = label_map_util.create_category_index(categories) entities = [] @@ -138,8 +192,6 @@ def setup_platform(hass, config, add_entities, discovery_info=None): hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME), - session, - detection_graph, category_index, config, ) @@ -152,14 +204,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity): """Representation of an TensorFlow image processor.""" def __init__( - self, - hass, - camera_entity, - name, - session, - detection_graph, - category_index, - config, + self, hass, camera_entity, name, category_index, config, ): """Initialize the TensorFlow entity.""" model_config = config.get(CONF_MODEL) @@ -169,13 +214,12 @@ class TensorFlowImageProcessor(ImageProcessingEntity): self._name = name else: self._name = "TensorFlow {}".format(split_entity_id(camera_entity)[1]) - self._session = session - self._graph = detection_graph self._category_index = category_index self._min_confidence = config.get(CONF_CONFIDENCE) self._file_out = config.get(CONF_FILE_OUT) # handle categories and specific detection areas + self._label_id_offset = model_config.get(CONF_LABEL_OFFSET) categories = model_config.get(CONF_CATEGORIES) self._include_categories = [] self._category_areas = {} @@ -212,6 +256,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity): self._matches = {} self._total_matches = 0 self._last_image = None + self._process_time = 0 @property def camera_entity(self): @@ -237,6 +282,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity): category: len(values) for category, values in self._matches.items() }, ATTR_TOTAL_MATCHES: self._total_matches, + ATTR_PROCESS_TIME: self._process_time, } def _save_image(self, image, matches, paths): @@ -281,10 +327,16 @@ class TensorFlowImageProcessor(ImageProcessingEntity): def process_image(self, image): """Process the image.""" + model = self.hass.data[DOMAIN][CONF_MODEL] + if not model: + _LOGGER.debug("Model not yet ready.") + return + start = time.perf_counter() try: import cv2 # pylint: disable=import-error, import-outside-toplevel + # pylint: disable=no-member img = cv2.imdecode(np.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED) inp = img[:, :, [2, 1, 0]] # BGR->RGB inp_expanded = inp.reshape(1, inp.shape[0], inp.shape[1], 3) @@ -303,15 +355,15 @@ class TensorFlowImageProcessor(ImageProcessingEntity): ) inp_expanded = np.expand_dims(inp, axis=0) - image_tensor = self._graph.get_tensor_by_name("image_tensor:0") - boxes = self._graph.get_tensor_by_name("detection_boxes:0") - scores = self._graph.get_tensor_by_name("detection_scores:0") - classes = self._graph.get_tensor_by_name("detection_classes:0") - boxes, scores, classes = self._session.run( - [boxes, scores, classes], feed_dict={image_tensor: inp_expanded} - ) - boxes, scores, classes = map(np.squeeze, [boxes, scores, classes]) - classes = classes.astype(int) + # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. + input_tensor = tf.convert_to_tensor(inp_expanded, dtype=tf.float32) + + detections = model(input_tensor) + boxes = detections["detection_boxes"][0].numpy() + scores = detections["detection_scores"][0].numpy() + classes = ( + detections["detection_classes"][0].numpy() + self._label_id_offset + ).astype(int) matches = {} total_matches = 0 @@ -367,3 +419,4 @@ class TensorFlowImageProcessor(ImageProcessingEntity): self._matches = matches self._total_matches = total_matches + self._process_time = time.perf_counter() - start diff --git a/homeassistant/components/tensorflow/manifest.json b/homeassistant/components/tensorflow/manifest.json index b7d0361d0875b40c69f6dd33bea4d2b255f3c792..fc87b5cdbff89b86971579f2d367db44d97cf966 100644 --- a/homeassistant/components/tensorflow/manifest.json +++ b/homeassistant/components/tensorflow/manifest.json @@ -3,9 +3,12 @@ "name": "TensorFlow", "documentation": "https://www.home-assistant.io/integrations/tensorflow", "requirements": [ - "tensorflow==1.13.2", + "tensorflow==2.2.0", + "tf-slim==1.1.0", + "tf-models-official==2.2.1", + "pycocotools==2.0.1", "numpy==1.19.1", - "protobuf==3.6.1", + "protobuf==3.12.2", "pillow==7.1.2" ], "codeowners": [] diff --git a/pylintrc b/pylintrc index df53c2f67a23b8c23113b2b1b00ea9a5cc7473c7..f2860026cd80793b94af4b29a770c1c38cd49ec6 100644 --- a/pylintrc +++ b/pylintrc @@ -5,7 +5,7 @@ ignore=tests jobs=2 load-plugins=pylint_strict_informational persistent=no -extension-pkg-whitelist=ciso8601 +extension-pkg-whitelist=ciso8601,cv2 [BASIC] good-names=id,i,j,k,ex,Run,_,fp,T,ev diff --git a/requirements_all.txt b/requirements_all.txt index fea3c46d4a48078022f8bf90957dfacdb9bfcec4..5a9a0ea64c9d55a4e878311608c3dd194f4142c7 100644 --- a/requirements_all.txt +++ b/requirements_all.txt @@ -1120,7 +1120,7 @@ proliphix==0.4.1 prometheus_client==0.7.1 # homeassistant.components.tensorflow -protobuf==3.6.1 +protobuf==3.12.2 # homeassistant.components.proxmoxve proxmoxer==1.1.1 @@ -1261,6 +1261,9 @@ pychromecast==7.2.0 # homeassistant.components.cmus pycmus==0.1.1 +# homeassistant.components.tensorflow +pycocotools==2.0.1 + # homeassistant.components.comfoconnect pycomfoconnect==0.3 @@ -2098,7 +2101,7 @@ temescal==0.1 temperusb==1.5.3 # homeassistant.components.tensorflow -# tensorflow==1.13.2 +# tensorflow==2.2.0 # homeassistant.components.powerwall tesla-powerwall==0.2.12 @@ -2106,6 +2109,12 @@ tesla-powerwall==0.2.12 # homeassistant.components.tesla teslajsonpy==0.10.1 +# homeassistant.components.tensorflow +# tf-models-official==2.2.1 + +# homeassistant.components.tensorflow +tf-slim==1.1.0 + # homeassistant.components.thermoworks_smoke thermoworks_smoke==0.1.8 diff --git a/script/gen_requirements_all.py b/script/gen_requirements_all.py index 4625924da29fc29f1e4b1f69649188eab1085d57..772b9af503440aab0857705bb7c2323cfa2e5a17 100755 --- a/script/gen_requirements_all.py +++ b/script/gen_requirements_all.py @@ -41,6 +41,7 @@ COMMENT_REQUIREMENTS = ( "RPi.GPIO", "smbus-cffi", "tensorflow", + "tf-models-official", "VL53L1X2", )