diff --git a/azure-pipelines-wheels.yml b/azure-pipelines-wheels.yml
index c89435954294ec4bd36c815ce421102207becc88..ebe704f12e2c58b069b89344116fbb532bd86ad2 100644
--- a/azure-pipelines-wheels.yml
+++ b/azure-pipelines-wheels.yml
@@ -89,5 +89,6 @@ jobs:
           sed -i "s|# py_noaa|py_noaa|g" ${requirement_file}
           sed -i "s|# bme680|bme680|g" ${requirement_file}
           sed -i "s|# python-gammu|python-gammu|g" ${requirement_file}
+          sed -i "s|# tf-models-official|tf-models-official|g" ${requirement_file}
         done
       displayName: 'Prepare requirements files for Home Assistant wheels'
diff --git a/homeassistant/components/tensorflow/image_processing.py b/homeassistant/components/tensorflow/image_processing.py
index f4eb5342c4653e660e922273423064c8614807d8..d6d20c63f56de3bbebf4c8de54db3d08fc999824 100644
--- a/homeassistant/components/tensorflow/image_processing.py
+++ b/homeassistant/components/tensorflow/image_processing.py
@@ -3,9 +3,11 @@ import io
 import logging
 import os
 import sys
+import time
 
 from PIL import Image, ImageDraw, UnidentifiedImageError
 import numpy as np
+import tensorflow as tf
 import voluptuous as vol
 
 from homeassistant.components.image_processing import (
@@ -16,16 +18,21 @@ from homeassistant.components.image_processing import (
     PLATFORM_SCHEMA,
     ImageProcessingEntity,
 )
+from homeassistant.const import EVENT_HOMEASSISTANT_START
 from homeassistant.core import split_entity_id
 from homeassistant.helpers import template
 import homeassistant.helpers.config_validation as cv
 from homeassistant.util.pil import draw_box
 
+os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
+
+DOMAIN = "tensorflow"
 _LOGGER = logging.getLogger(__name__)
 
 ATTR_MATCHES = "matches"
 ATTR_SUMMARY = "summary"
 ATTR_TOTAL_MATCHES = "total_matches"
+ATTR_PROCESS_TIME = "process_time"
 
 CONF_AREA = "area"
 CONF_BOTTOM = "bottom"
@@ -34,6 +41,7 @@ CONF_CATEGORY = "category"
 CONF_FILE_OUT = "file_out"
 CONF_GRAPH = "graph"
 CONF_LABELS = "labels"
+CONF_LABEL_OFFSET = "label_offset"
 CONF_LEFT = "left"
 CONF_MODEL = "model"
 CONF_MODEL_DIR = "model_dir"
@@ -58,12 +66,13 @@ PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
         vol.Optional(CONF_FILE_OUT, default=[]): vol.All(cv.ensure_list, [cv.template]),
         vol.Required(CONF_MODEL): vol.Schema(
             {
-                vol.Required(CONF_GRAPH): cv.isfile,
+                vol.Required(CONF_GRAPH): cv.isdir,
                 vol.Optional(CONF_AREA): AREA_SCHEMA,
                 vol.Optional(CONF_CATEGORIES, default=[]): vol.All(
                     cv.ensure_list, [vol.Any(cv.string, CATEGORY_SCHEMA)]
                 ),
                 vol.Optional(CONF_LABELS): cv.isfile,
+                vol.Optional(CONF_LABEL_OFFSET, default=1): int,
                 vol.Optional(CONF_MODEL_DIR): cv.isdir,
             }
         ),
@@ -71,17 +80,40 @@ PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
 )
 
 
+def get_model_detection_function(model):
+    """Get a tf.function for detection."""
+
+    @tf.function
+    def detect_fn(image):
+        """Detect objects in image."""
+
+        image, shapes = model.preprocess(image)
+        prediction_dict = model.predict(image, shapes)
+        detections = model.postprocess(prediction_dict, shapes)
+
+        return detections
+
+    return detect_fn
+
+
 def setup_platform(hass, config, add_entities, discovery_info=None):
     """Set up the TensorFlow image processing platform."""
-    model_config = config.get(CONF_MODEL)
+    model_config = config[CONF_MODEL]
     model_dir = model_config.get(CONF_MODEL_DIR) or hass.config.path("tensorflow")
     labels = model_config.get(CONF_LABELS) or hass.config.path(
         "tensorflow", "object_detection", "data", "mscoco_label_map.pbtxt"
     )
+    checkpoint = os.path.join(model_config[CONF_GRAPH], "checkpoint")
+    pipeline_config = os.path.join(model_config[CONF_GRAPH], "pipeline.config")
 
     # Make sure locations exist
-    if not os.path.isdir(model_dir) or not os.path.exists(labels):
-        _LOGGER.error("Unable to locate tensorflow models or label map")
+    if (
+        not os.path.isdir(model_dir)
+        or not os.path.isdir(checkpoint)
+        or not os.path.exists(pipeline_config)
+        or not os.path.exists(labels)
+    ):
+        _LOGGER.error("Unable to locate tensorflow model or label map")
         return
 
     # append custom model path to sys.path
@@ -89,18 +121,17 @@ def setup_platform(hass, config, add_entities, discovery_info=None):
 
     try:
         # Verify that the TensorFlow Object Detection API is pre-installed
-        os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
         # These imports shouldn't be moved to the top, because they depend on code from the model_dir.
         # (The model_dir is created during the manual setup process. See integration docs.)
-        import tensorflow as tf  # pylint: disable=import-outside-toplevel
 
         # pylint: disable=import-outside-toplevel
-        from object_detection.utils import label_map_util
+        from object_detection.utils import config_util, label_map_util
+        from object_detection.builders import model_builder
     except ImportError:
         _LOGGER.error(
             "No TensorFlow Object Detection library found! Install or compile "
             "for your system following instructions here: "
-            "https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md"
+            "https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md#installation"
         )
         return
 
@@ -113,22 +144,45 @@ def setup_platform(hass, config, add_entities, discovery_info=None):
             "PIL at reduced resolution"
         )
 
-    # Set up Tensorflow graph, session, and label map to pass to processor
-    # pylint: disable=no-member
-    detection_graph = tf.Graph()
-    with detection_graph.as_default():
-        od_graph_def = tf.GraphDef()
-        with tf.gfile.GFile(model_config.get(CONF_GRAPH), "rb") as fid:
-            serialized_graph = fid.read()
-            od_graph_def.ParseFromString(serialized_graph)
-            tf.import_graph_def(od_graph_def, name="")
-
-    session = tf.Session(graph=detection_graph)
-    label_map = label_map_util.load_labelmap(labels)
-    categories = label_map_util.convert_label_map_to_categories(
-        label_map, max_num_classes=90, use_display_name=True
+    hass.data[DOMAIN] = {CONF_MODEL: None}
+
+    def tensorflow_hass_start(_event):
+        """Set up TensorFlow model on hass start."""
+        start = time.perf_counter()
+
+        # Load pipeline config and build a detection model
+        pipeline_configs = config_util.get_configs_from_pipeline_file(pipeline_config)
+        detection_model = model_builder.build(
+            model_config=pipeline_configs["model"], is_training=False
+        )
+
+        # Restore checkpoint
+        ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
+        ckpt.restore(os.path.join(checkpoint, "ckpt-0")).expect_partial()
+
+        _LOGGER.debug(
+            "Model checkpoint restore took %d seconds", time.perf_counter() - start
+        )
+
+        model = get_model_detection_function(detection_model)
+
+        # Preload model cache with empty image tensor
+        inp = np.zeros([2160, 3840, 3], dtype=np.uint8)
+        # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
+        input_tensor = tf.convert_to_tensor(inp, dtype=tf.float32)
+        # The model expects a batch of images, so add an axis with `tf.newaxis`.
+        input_tensor = input_tensor[tf.newaxis, ...]
+        # Run inference
+        model(input_tensor)
+
+        _LOGGER.debug("Model load took %d seconds", time.perf_counter() - start)
+        hass.data[DOMAIN][CONF_MODEL] = model
+
+    hass.bus.listen_once(EVENT_HOMEASSISTANT_START, tensorflow_hass_start)
+
+    category_index = label_map_util.create_category_index_from_labelmap(
+        labels, use_display_name=True
     )
-    category_index = label_map_util.create_category_index(categories)
 
     entities = []
 
@@ -138,8 +192,6 @@ def setup_platform(hass, config, add_entities, discovery_info=None):
                 hass,
                 camera[CONF_ENTITY_ID],
                 camera.get(CONF_NAME),
-                session,
-                detection_graph,
                 category_index,
                 config,
             )
@@ -152,14 +204,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
     """Representation of an TensorFlow image processor."""
 
     def __init__(
-        self,
-        hass,
-        camera_entity,
-        name,
-        session,
-        detection_graph,
-        category_index,
-        config,
+        self, hass, camera_entity, name, category_index, config,
     ):
         """Initialize the TensorFlow entity."""
         model_config = config.get(CONF_MODEL)
@@ -169,13 +214,12 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
             self._name = name
         else:
             self._name = "TensorFlow {}".format(split_entity_id(camera_entity)[1])
-        self._session = session
-        self._graph = detection_graph
         self._category_index = category_index
         self._min_confidence = config.get(CONF_CONFIDENCE)
         self._file_out = config.get(CONF_FILE_OUT)
 
         # handle categories and specific detection areas
+        self._label_id_offset = model_config.get(CONF_LABEL_OFFSET)
         categories = model_config.get(CONF_CATEGORIES)
         self._include_categories = []
         self._category_areas = {}
@@ -212,6 +256,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
         self._matches = {}
         self._total_matches = 0
         self._last_image = None
+        self._process_time = 0
 
     @property
     def camera_entity(self):
@@ -237,6 +282,7 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
                 category: len(values) for category, values in self._matches.items()
             },
             ATTR_TOTAL_MATCHES: self._total_matches,
+            ATTR_PROCESS_TIME: self._process_time,
         }
 
     def _save_image(self, image, matches, paths):
@@ -281,10 +327,16 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
 
     def process_image(self, image):
         """Process the image."""
+        model = self.hass.data[DOMAIN][CONF_MODEL]
+        if not model:
+            _LOGGER.debug("Model not yet ready.")
+            return
 
+        start = time.perf_counter()
         try:
             import cv2  # pylint: disable=import-error, import-outside-toplevel
 
+            # pylint: disable=no-member
             img = cv2.imdecode(np.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
             inp = img[:, :, [2, 1, 0]]  # BGR->RGB
             inp_expanded = inp.reshape(1, inp.shape[0], inp.shape[1], 3)
@@ -303,15 +355,15 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
             )
             inp_expanded = np.expand_dims(inp, axis=0)
 
-        image_tensor = self._graph.get_tensor_by_name("image_tensor:0")
-        boxes = self._graph.get_tensor_by_name("detection_boxes:0")
-        scores = self._graph.get_tensor_by_name("detection_scores:0")
-        classes = self._graph.get_tensor_by_name("detection_classes:0")
-        boxes, scores, classes = self._session.run(
-            [boxes, scores, classes], feed_dict={image_tensor: inp_expanded}
-        )
-        boxes, scores, classes = map(np.squeeze, [boxes, scores, classes])
-        classes = classes.astype(int)
+        # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
+        input_tensor = tf.convert_to_tensor(inp_expanded, dtype=tf.float32)
+
+        detections = model(input_tensor)
+        boxes = detections["detection_boxes"][0].numpy()
+        scores = detections["detection_scores"][0].numpy()
+        classes = (
+            detections["detection_classes"][0].numpy() + self._label_id_offset
+        ).astype(int)
 
         matches = {}
         total_matches = 0
@@ -367,3 +419,4 @@ class TensorFlowImageProcessor(ImageProcessingEntity):
 
         self._matches = matches
         self._total_matches = total_matches
+        self._process_time = time.perf_counter() - start
diff --git a/homeassistant/components/tensorflow/manifest.json b/homeassistant/components/tensorflow/manifest.json
index b7d0361d0875b40c69f6dd33bea4d2b255f3c792..fc87b5cdbff89b86971579f2d367db44d97cf966 100644
--- a/homeassistant/components/tensorflow/manifest.json
+++ b/homeassistant/components/tensorflow/manifest.json
@@ -3,9 +3,12 @@
   "name": "TensorFlow",
   "documentation": "https://www.home-assistant.io/integrations/tensorflow",
   "requirements": [
-    "tensorflow==1.13.2",
+    "tensorflow==2.2.0",
+    "tf-slim==1.1.0",
+    "tf-models-official==2.2.1",
+    "pycocotools==2.0.1",
     "numpy==1.19.1",
-    "protobuf==3.6.1",
+    "protobuf==3.12.2",
     "pillow==7.1.2"
   ],
   "codeowners": []
diff --git a/pylintrc b/pylintrc
index df53c2f67a23b8c23113b2b1b00ea9a5cc7473c7..f2860026cd80793b94af4b29a770c1c38cd49ec6 100644
--- a/pylintrc
+++ b/pylintrc
@@ -5,7 +5,7 @@ ignore=tests
 jobs=2
 load-plugins=pylint_strict_informational
 persistent=no
-extension-pkg-whitelist=ciso8601
+extension-pkg-whitelist=ciso8601,cv2
 
 [BASIC]
 good-names=id,i,j,k,ex,Run,_,fp,T,ev
diff --git a/requirements_all.txt b/requirements_all.txt
index fea3c46d4a48078022f8bf90957dfacdb9bfcec4..5a9a0ea64c9d55a4e878311608c3dd194f4142c7 100644
--- a/requirements_all.txt
+++ b/requirements_all.txt
@@ -1120,7 +1120,7 @@ proliphix==0.4.1
 prometheus_client==0.7.1
 
 # homeassistant.components.tensorflow
-protobuf==3.6.1
+protobuf==3.12.2
 
 # homeassistant.components.proxmoxve
 proxmoxer==1.1.1
@@ -1261,6 +1261,9 @@ pychromecast==7.2.0
 # homeassistant.components.cmus
 pycmus==0.1.1
 
+# homeassistant.components.tensorflow
+pycocotools==2.0.1
+
 # homeassistant.components.comfoconnect
 pycomfoconnect==0.3
 
@@ -2098,7 +2101,7 @@ temescal==0.1
 temperusb==1.5.3
 
 # homeassistant.components.tensorflow
-# tensorflow==1.13.2
+# tensorflow==2.2.0
 
 # homeassistant.components.powerwall
 tesla-powerwall==0.2.12
@@ -2106,6 +2109,12 @@ tesla-powerwall==0.2.12
 # homeassistant.components.tesla
 teslajsonpy==0.10.1
 
+# homeassistant.components.tensorflow
+# tf-models-official==2.2.1
+
+# homeassistant.components.tensorflow
+tf-slim==1.1.0
+
 # homeassistant.components.thermoworks_smoke
 thermoworks_smoke==0.1.8
 
diff --git a/script/gen_requirements_all.py b/script/gen_requirements_all.py
index 4625924da29fc29f1e4b1f69649188eab1085d57..772b9af503440aab0857705bb7c2323cfa2e5a17 100755
--- a/script/gen_requirements_all.py
+++ b/script/gen_requirements_all.py
@@ -41,6 +41,7 @@ COMMENT_REQUIREMENTS = (
     "RPi.GPIO",
     "smbus-cffi",
     "tensorflow",
+    "tf-models-official",
     "VL53L1X2",
 )